CS 6501: Deep Learning for Computer Graphics

Training Neural Networks II

Connelly Barnes
Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
 • Softmax
Preprocessing

- Common: zero-center, can normalize variance.

\[
X \gets \text{np.mean}(X, \text{axis} = 0)
\]
\[
X \div \text{np.std}(X, \text{axis} = 0)
\]

(Assume X [NxD] is data matrix, each example in a row)
Preprocessing

• Can also decorrelate the data by using PCA, or whiten data

Slide from Stanford CS231n
Preprocessing for Images

• Center the data only
• Compute a mean image (examples of mean faces)
 • Either grayscale or compute separate mean for channels (RGB)
• Subtract the mean from your dataset
Overview

- Preprocessing
- Initialization
 - Vanishing/exploding gradients problem
 - Batch normalization
 - Dropout

- Additional neuron types:
 - Softmax
Initialization

- Need to start gradient descent at an initial guess
- What happens if we initialize all weights to zero?
Initialization

• Idea: random numbers (e.g. normal distribution)

\[w_{ij} = \mathcal{N}(\mu, \sigma) \]

\[\mu = 0, \quad \sigma = \text{const} \]

• OK for shallow networks, but what about deep networks?
Initialization, \(\sigma = 0.01 \)

- Simulation: multilayer perceptron, 10 fully-connected hidden layers
- Tanh() activation function

Hidden layer activation function statistics:

Are there any problems with this?
Initialization, \(\sigma = 1 \)

- Simulation: multilayer perceptron, 10 fully-connected hidden layers
- Tanh() activation function

Hidden layer activation function statistics:

Are there any problems with this?
Xavier Initialization

\[\sigma = \frac{1}{\sqrt{n_{\text{in}}}} \]

\(n_{\text{in}} \): Number of neurons feeding into given neuron

(actually, Xavier used a uniform distribution)

Hidden layer activation function statistics:

Reasonable initialization for \(\text{tanh}() \) activation function.

But what happens with ReLU?

Hidden Layer 1

Hidden Layer 10

Slide from Stanford CS231n
Xavier Initialization, ReLU

\[\sigma = \frac{1}{\sqrt{n_{in}}} \]

\(n_{in}\): Number of neurons feeding into given neuron

Hidden layer activation function statistics:

Hidden Layer 1

Hidden Layer 10

Slide from Stanford CS231n
He et al. 2015 Initialization, ReLU

$$\sigma = \frac{\sqrt{2}}{\sqrt{n_{\text{in}}}}$$

n_{in}: Number of neurons feeding into given neuron

Hidden layer activation function statistics:

Hidden Layer 1

Slide from Stanford CS231n
Other Ways to Initialize?

• Start with an existing pre-trained neural network’s weights, **fine tune** its weights by re-running gradient descent
 • This is really transfer learning, since it also transfers knowledge from the previously trained network

• Previously, people used **unsupervised pre-training with autoencoders**
 • But we have better initializations now
Overview

- Preprocessing
- Initialization
- Vanishing/exploding gradients problem
- Batch normalization
- Dropout

- Additional neuron types:
 - Softmax
Vanishing/exploding gradient problem

• Recall from the backpropagation algorithm (last class slides):

\[
\frac{\partial E}{\partial w_{ij}} = \delta_j o_i
\]

\[
\delta_j = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} = \varphi'(o_j) \left\{ \begin{aligned}
(o_j - t_j) & \quad \text{if } j \text{ is an output neuron} \\
\sum_{l \in L} \delta_l w_{jl} & \quad \text{if } j \text{ is an interior neuron}
\end{aligned} \right.
\]

• Take \(\|\delta\|\) over all neurons in a layer.
• We can call this a “learning speed.”
Vanishing/exploding gradient problem

- **Vanishing gradients problem**: neurons in earlier layers learn more slowly than in latter layers.
Vanishing/exploding gradient problem

- **Vanishing gradients problem**: neurons in earlier layers learn more slowly than in latter layers.
- **Exploding gradients problem**: gradients are significantly larger in earlier layers than latter layers.

How to avoid?
- Use a good initialization
- **Do not use sigmoid for deep networks**
- Use momentum with **carefully tuned schedules**, e.g.:

\[
m_t = \min \left(1 - 2^{-1-\log_2([t/250]+1)}, \mu_{\text{max}} \right)
\]
Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• **Batch normalization**
• Dropout

• Additional neuron types:
 • Softmax
Batch normalization

- It would be great if we could just **whiten** the inputs to all neurons in a layer: i.e. zero mean, variance of 1.
 - Avoid vanishing gradients problem, improve learning rates!
 - For each input \(k \) to the next layer:
 \[
 \hat{x}(k) = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
 \]
 - Slight problem: this reduces representation ability of network
 - Why?
Batch normalization

- It would be great if we could just whiten the inputs to all neurons in a layer: i.e. zero mean, variance of 1.
 - Avoid vanishing gradients problem, improve learning rates!
 - For each input k to the next layer:
 - Slight problem: this reduces representation ability of network
 - Why?

Get stuck in this part of the activation function
Batch normalization

• First whiten each input k independently, using statistics from the mini-batch:

$$
\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}
$$

• Then introduce parameters to scale and shift each input:

$$
y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}
$$

• These parameters are learned by the optimization.
Batch normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1 \ldots m\}$;
Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma, \beta}(x_i)\}$

$$
\mu_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean}
$$

$$
\sigma^2_\mathcal{B} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_\mathcal{B})^2 \quad \text{// mini-batch variance}
$$

$$
\hat{x}_i \leftarrow \frac{x_i - \mu_\mathcal{B}}{\sqrt{\sigma^2_\mathcal{B} + \epsilon}} \quad \text{// normalize}
$$

$$
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \quad \text{// scale and shift}
$$
Dropout: regularization

- Randomly zero outputs of p fraction of the neurons during training
- Can we learn representations that are robust to loss of neurons?

Intuition: learn and remember useful information even if there are some errors in the computation (biological connection?)

(a) Standard Neural Net (b) After applying dropout.

[Srivastava et al., 2014]
Dropout

- Another interpretation: we are learning a large ensemble of models that share weights.

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]
Dropout

• Another interpretation: we are learning a large ensemble of models that share weights.

• What can we do during testing to correct for the dropout process?
 • Multiply all neurons outputs by p.
 • Or equivalently (inverse dropout) simply divide all neurons outputs by p during training.

[Image of standard neural net and neural net after applying dropout]

(Srivastava et al., 2014)
Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
 • Softmax
Softmax

- Often used in final output layer to convert neuron outputs into a class probability scores that sum to 1.
- For example, might want to convert the final network output to:
 - $P(\text{dog}) = 0.2$ (Probabilities in range $[0, 1]$)
 - $P(\text{cat}) = 0.8$
 - (Sum of all probabilities is 1).
Softmax

- Softmax takes a vector \mathbf{z} and outputs a vector of the same length.

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^{K} e^{z_k}} \quad \text{for } j = 1, \ldots, K.$$

$$\frac{\partial}{\partial q_k} \sigma(\mathbf{q}, i) = \cdots = \sigma(\mathbf{q}, i)(\delta_{ik} - \sigma(\mathbf{q}, k))$$