
1

last time
makefiles — target: prereqs(newline)(tab)commands

targets — files to generate/update
prereqs — other files to use to do that

“phony” rules: targets that aren’t file
e.g. “make clean” to remove generated

avoiding redundancy
macros: CC=foo ... $(CC)
suffix and pattern rules

2

anonymous feedback
“I’ve noticed some students have had their hands raised but they are not seen.
Typically toward the top part of the room and the sides.”

“Please try to write more clearly, it can become difficult to read the handwriting.
Thank you!”

“The C review was very helpful. I was wondering if you could go over memory
allocation next class as well. I was also wondering when/ how you should allocate
memory”

3

quiz Q1
main.o

main.exe libutility.soload at runtime

4

quiz Q3

constants.h

constants.csv

process with constantstocsvh

5

quiz Q4
foo.exe foo.o foo.c (foo.exe:foo.c) (foo.exe:foo.o; foo.o:foo.c)
newest middle oldest — —
newest oldest middle — foo.o+foo.exe
middle newest oldest — foo.exe
middle oldest newest foo.o+foo.exe foo.o+foo.exe
oldest newest middle foo.o+foo.exe foo.exe
oldest middle newest foo.o+foo.exe foo.o+foo.exe

6

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

7

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

8

privileged operation: problem
how can hardware (HW) plus operating system (OS) allow:

read your own files from hard drive

but disallow:
read others files from hard drive

9

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

10

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

10

some ideas
OS tells HW ‘okay’ parts of hard drive before running program
code

complex for hardware and for OS

OS verifies your program’s code can’t do bad hard drive access
no work for HW, but complex for OS
may require compiling differently to allow analysis

OS tells HW to only allow OS-written code to access hard drive
that code can enforce only ‘good’ accesses
requires program code to call OS routines to access hard drive
relatively simple for hardware

10

kernel mode
extra one-bit register: “are we in kernel mode”

other names: privileged mode, supervisor mode, …

not in kernel mode = user mode

certain operations only allowed in kernel mode
privileged instructions

example: talking to any I/O device

11

what runs in kernel mode?
system boots in kernel mode

OS switches to user mode to run program code

next topic: when does system switch back to kernel mode?
how does OS tell HW where the (trusted) OS code is?

12

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

15

calling the OS?

OS code

program code

void readFromDiskInto(int diskLocation, char *dest) {
...
runPrivilegedInstruction(...);
...

}

void readFileSafely(const char *name, char *dest) {
if (canCurrentProgramCanAccessFile(name)) {

readFromDiskInto(lookupFile(name), dest)
}

}

how do we let this code run
readFromSafely in kernel mode
but not readFromDisk?

16

controlled entry to kernel mode (1)
special instruction: “system call”

runs OS code in kernel mode at location specified earlier

OS sets up at boot

location can’t be changed without privilieged instrution

17

controlled entry to kernel mode (2)
OS needs to make specified location:

figure out what operation the program wants
calling convention, similar to function arguments + return value

be “safe” — not allow the program to do ‘bad’ things
example: checks whether current program is allowed to read file before
reading it
requires exceptional care — program can try weird things

18

Linux x86-64 system calls
special instruction: syscall

runs OS specified code in kernel mode

19

Linux syscall calling convention
before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
20

Linux x86-64 hello world
.globl _start
.data
hello_str: .asciz "Hello, World!\n"
.text
_start:

movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

21

approx. system call handler
sys_call_table:

.quad handle_read_syscall

.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception 22

Linux system call examples
mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files

socket, accept, getpeername — socket-related

23

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

24

system call wrappers
library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

24

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
25

system call wrapper: usage
/* unistd.h contains definitions of:

O_RDONLY (integer constant), open() */
#include <unistd.h>
int main(void) {

int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error: %s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}
25

strace hello_world (1)
strace — Linux tool to trace system calls

run on assembly program we saw earlier:
$ strace -o trace.txt ./hello_world
$ cat trace.txt
execve("./hello_world", ["./hello_world"],

0x7ffeedafd0a0 /* 28 vars */) = 0
write(1, "Hello, World!\n\0", 14) = 14
exit(0) = ?
+++ exited with 0 +++

26

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when statically linked:
execve("./hello_world", ["./hello_world"], 0x7ffeb4127f70 /* 28 vars */)

= 0
brk(NULL) = 0x22f8000
brk(0x22f91c0) = 0x22f91c0
arch_prctl(ARCH_SET_FS, 0x22f8880) = 0
uname({sysname="Linux", nodename="reiss-t3620", ...}) = 0
readlink("/proc/self/exe", "/u/cr4bd/spring2023/cs3130/slide"..., 4096)

= 57
brk(0x231a1c0) = 0x231a1c0
brk(0x231b000) = 0x231b000
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or

directory)
fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 4), ...}) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++

27

aside: what are those syscalls?
execve: run program
brk: allocate heap space
arch_prctl(ARCH_SET_FS, ...): thread local storage pointer

may make more sense when we cover concurrency/parallelism later

uname: get system information
readlink of /proc/self/exe: get name of this program
access: can we access this file [in this case, a config file]?
fstat: get information about open file
exit_group: variant of exit

28

strace hello_world (2)
#include <stdio.h>
int main() { puts("Hello, World!"); }
when dynamically linked:
execve("./hello_world", ["./hello_world"], 0x7ffcfe91d540 /* 28 vars */)

= 0
brk(NULL) = 0x55d6c351b000
...
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=196684, ...}) = 0
mmap(NULL, 196684, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7a62dd3000
close(3) = 0
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0"..., 832) = 832
...
close(3) = 0
write(1, "Hello, World!\n", 14) = 14
exit_group(0) = ?
+++ exited with 0 +++ 29

hardware + system call interface
applications + libraries

system call interface
kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

30

hardware + system call + library interface
application

library interface

system libraries
system call interface

kernel part of OS that runs in kernel mode

hardware

user-mode
hardware
interface
(limited)

kernel-mode
hardware interface

(complete)

31

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

32

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

33

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is …
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

33

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 (always)
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

34

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

35

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

36

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

37

address space
programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

38

address space mechanisms
topic after exceptions

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

39

shared memory
recall: dynamically linked libraries
would be nice not to duplicate code/data…
we can!

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

Shared code or data
OS data

real memory

40

one way to set shared memory on Linux
/* regular file, OR: */
int fd = open("/tmp/somefile.dat", O_RDWR);
/* special in-memory file */
int fd = shm_open("/name", O_RDWR);
...
/* make file's data accessible as memory */
void *memory = mmap(NULL, size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

mmap: “map” a file’s data into your memory

will discuss a bit more when we talk about virtual memory

part of how Linux loads dynamically linked libraries

41

memory protection
modifying another program’s memory?
Program A Program B
0x10000: .long 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax (in A) is 42 (always) result: might crash
A. 42 B. 99 C. 0x10000
D. 42 or 99 (depending on timing/program layout/etc)
E. 42 or 99 or program might crash (depending on …)
F. something else

42

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

43

program crashing?
what happens on processor when program crashes?

other program informed of crash to display message

use processor to run some other program

how does hardware do this?

would be complicated to tell about other programs, etc.

instead: hardware runs designated OS routine

43

exceptions
recall: system calls — software asks OS for help

also cases where hardware asks OS for help

different triggers than system calls

but same mechanism as system calls:
switch to kernel mode (if not already)
call OS-designated function

44

locating exception handlers (one strategy)

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

45

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

47

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

47

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

47

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

(and more we’ll talk about later)

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

47

things programs on portal shouldn’t do
read other user’s files

modify OS’s memory

read other user’s data in memory

hang the entire system

48

an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}
If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

49

timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

50

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

51

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

52

types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

53

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

54

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

54

time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

54

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

55

time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

55

backup slides

56

keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

57

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

58

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

58

exceptions in exceptions
handle_timer_interrupt:

save_old_pc save_pc
movq %r15, save_r15
/* key press here */

movq %r14, save_r14
...

handle_keyboard_interrupt:
save_old_pc save_pc
movq %r15, save_r15
movq %r14, save_r14
movq %r13, save_r13
...

oops, overwrote saved values?

58

interrupt disabling
CPU supports disabling (most) interrupts

interrupts will wait until it is reenabled

CPU has extra state:
are interrupts enabled?
is keyboard interrupt pending?
is timer interrupt pending?

59

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

60

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

60

exceptions in exceptions
handle_timer_interrupt:

/* interrupts automatically disabled here */
movq %rsp, save_rsp
save_old_pc save_pc
/* key press here */
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_set_kernel_stack:
pushq save_rsp
pushq save_pc
enable_intterupts2
pushq %r15
...

/* interrupt happens here! */
...

handle_keyboard_interrupt:
movq %rsp, save_rsp
save_old_pc save_pc
jmpIfFromKernelMode skip_exception_stack
movq current_exception_stack, %rsp

skip_exception_stack:
pushq save_rsp
pushq save_pc
enable_intterupts
pushq %r15
...

60

disabling interrupts
automatically disabled when exception handler starts

also can be done with privileged instruction:
change_keyboard_parameters:

disable_interrupts
...
/* change things used by

handle_keyboard_interrupt here */
...
enable_interrupts

61

context
all registers values

%rax %rbx, …, %rsp, …

condition codes

program counter

address space (map from program to real addresses)

62

context switch pseudocode
context_switch(last, next):

copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

63

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware interface

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

64

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

64

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?
the OS?

64

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

64

the classic Unix design
applications

standard library functions / shell commands
standard libraries and
utility programs

system call interface

kernel

hardware

user-mode
hardware
interface
(limited)

kernel-mode hardware interface (complete)

CPU scheduler filesystems networking
virtual memory device drivers signals
pipes swapping …

libc (C standard library) the shell
login login…

memory management unit device controllers …

the OS?

the OS?

64

aside: is the OS the kernel?
OS = stuff that runs in kernel mode?

OS = stuff that runs in kernel mode + libraries to use it?

OS = stuff that runs in kernel mode + libraries + utility programs
(e.g. shell, finder)?

OS = everything that comes with machine?

no consensus on where the line is

each piece can be replaced separately…

65

exception implementation
detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

66

exception implementation: notes
I describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

67

running the exception handler
hardware saves the old program counter (and maybe more)

identifies location of exception handler via table

then jumps to that location

OS code can save anything else it wants to , etc.

68

	some malicious things we'd like to stop
	privileged instruction idea
	preview: unix design
	OS code in memory
	exception entry point
	system calls on Linux
	system call wrappers

	interlude: strace
	kernel + standard library
	memory protection
	exercise: expected behavior?
	address spaces
	preview: shared memory

	extending system calls: exception idea
	exception table
	reasons for exceptions, generally

	infinite loop
	time multiplexing
	operating system runs

	backup slides
	key-in timeline
	nested exceptions?
	in the context
	context switch pseudocode
	Unix design [full]

	exception dispatch

