
kernel 2 / signals

1



changelog
11 Sep 2023: trim slides to not include things we did not get to in
lecture that are on the next days slides

2



last time (1)
kernel mode

kernel mode — “dangerous” operations allowed
only OS code allowed to run in kernel mode

exceptions
hardware runs OS-specified routine in kernel mode
allows OS to help programs/hardware do something

system calls — exceptions intentionally triggered by program
how programs ask to do something that needs kernel mode

other exceptions — things hardware needs OS help to handle
program “errors” (divide by zero, out-of-bounds, etc.)
I/O events (keypress, network input, etc.)
timer

3



last time (2)
address translation / address spaces

address program uses not “real” address
OS sets mapping (function) from program to real addresses
mapping limits what memory program can access
mapping allows any program address OS chooses
one mapping per running program

time multiplexing
processor shared between multiple programs over time
when OS runs from exception, can switch programs

4



anonymous feedback
“Not a huge thing, but would it be possible to run code on the slides on a program
during lecture? Seeing the text on the slides helps, but I feel it would help us better
to know how to set up our code in terminal, see the results in real time, and explain
errors if they arise? Seeing a lot of code on the slides is a sometimes a bit
overwhelming or hard to understand in the current format.”

when I do live demos, usually pretty canned/setup in advance
so probably not helpful for what you want
probably should spend more time explaining code on slides

“Can you explain system calls/ time multiplexing again/ clarify it. It was confusing
during lecture/ felt rushed. And could you further explain the diagram with kernel/
system call more clearly”

5



system call process
user mode kernel mode

program encodes
request for OS in regs

program runs special instruction
start system call handler

read registers
to find out what
program wants
and maybe do it

exit system call handler

6



general exception process
user mode kernel mode

something triggers exception
maybe the program did
or maybe something else

start exception handler

OS handles
whatever happenedgo back to running

program code
possibly a different

program than before
exit exception handler

7



types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

9



an infinite loop
int main(void) {

while (1) {
/* waste CPU time */

}
}
If I run this on a shared department machine, can you still use it?
…if the machine only has one core?

10



timing nothing
long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end - start;

}
output_timings(times);

}
same instructions — same difference each time?

11



doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

12



doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

13



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

14



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

14



time multiplexing
loop.exe ssh.exe firefox.exe loop.exe ssh.exeprocessor:

time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

14



time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

15



time multiplexing really
loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

15



types of exceptions
system calls

intentional — ask OS to do something

errors/events in programs
memory not in address space (“Segmentation fault”)
privileged instruction
divide by zero, invalid instruction
…

external — I/O, etc.
timer — configured by OS to run OS at certain time
I/O devices — key presses, hard drives, networks, …
hardware is broken (e.g. memory parity error)

asynchronous
not triggered by
running program

synchronous
triggered by
current program

16



keyboard input timeline

read_input.exe read_input.exe

read system call

from keyboard

= operating system

17



crash timeline timeline

segfault.exe

out of bounds memory acecss

= operating system

18



threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

19



threads
thread = illusion of own processor

own register values

own program counter value

actual implementation:
many threads sharing one processor

problem: where are register/program counter values
when thread not active on processor?

19



switching programs
OS starts running somehow

some sort of exception

saves old registers + program counter
(optimization: could omit when program crashing/exiting)

sets new registers, jumps to new program counter

called context switch
saved information called context

20



contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

21



contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

22



review: definitions
exception: hardware calls OS specified routine

many possible reasons
system calls: type of exception

context switch: OS switches to another thread
by saving old register values + loading new ones
part of OS routine run by exception

23



which of these require exceptions? context
switches?
A. program calls a function in the standard library

B. program writes a file to disk

C. program A goes to sleep, letting program B run

D. program exits

E. program returns from one function to another function

F. program pops a value from the stack

24



which require exceptions [answers] (1)
A. program calls a function in the standard library

no (same as other functions in program; some standard library functions
might make system calls, but if so, that’ll be part of what happens after
they’re called and before they return)

B. program writes a file to disk
yes (requires kernel mode only operations)

C. program A goes to sleep, letting program B run
yes (kernel mode usually required to change the address space to acess
program B’s memory)

25



which require exceptions [answer] (2)
D. program exits

yes (requires switching to another program, which requires accessing OS
data + other program’s memory)

E. program returns from one function to another function
no

F. program pops a value from the stack
no

26



which require context switches [answer]
no: A. program calls a function in the standard library

no: B. program writes a file to disk
(but might be done if program needs to wait for disk and other things
could be run while it does)

yes: C. program A goes to sleep, letting program B run

yes: D. program exits

no: E. program returns from one function to another function

no: F. program pops a value from the stack

27



terms for exceptions
terms for exceptions aren’t standardized

our readings use one set of terms
interrupts = externally-triggered
faults = error/event in program
trap = intentionally triggered

all these terms appear differently elsewhere

28



The Process
process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

29



signals
Unix-like operating system feature
like exceptions for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
other events that would normal terminate program

‘segmentation fault’
illegal instruction
divide by zero

can invoke signal handler (like exception handler)
30



exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

31



exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

31



exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

31



exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

31



base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

32



base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

32



base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

32



new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

33



new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

33



new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

33



example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
34



example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
34



example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
34



SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

35



SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

35



handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

36



handling Segmentation Fault
...
void handle_sigsegv(int num) {

puts("got SIGSEGV");
}

int main(void) {
struct sigaction act;
act.sa_handler = handle_sigsegv;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGSEGV, &act, NULL);

asm("movq %rax, 0x12345678");
}

got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV
got SIGSEGV

36



signal API
sigaction — register handler for signal

kill — send signal to process
uses process ID (integer, retrieve from getpid())

pause — put process to sleep until signal received

sigprocmask — temporarily block/unblock some signals from
being received

signal will still be pending, received if unblocked

… and much more

37



kill command
kill command-line command : calls the kill() function

kill 1234 — sends SIGTERM to pid 1234
in C: kill(1234, SIGTERM)

kill -USR1 1234 — sends SIGUSR1 to pid 1234
in C: kill(1234, SIGUSR1)

38



backup slides

39


	diagrams on system calls/excepts
	reasons for exceptions, generally
	infinite loop
	time multiplexing
	operating system runs
	not just timers

	thread idea
	context switches
	exception + context switch
	exercise
	aside: terms

	process
	signals
	idea
	example / sigaction
	signal IDs/events
	wait, SIGSEGV?
	signal API

	backup slides

