
1

changelog
5 Sep 2023: ‘output of this?’: fix code to consistently use
handle_usr1 instead of multiple names for signal handler

11 Sep 2023: ‘synchronous signal handling’: change program to
correctly use sigwait (previous code was based on sigwaitinfo)

2

last time
context switch — save current/restore old context

context = state on processor
(registers, program counter, …)

thread = illusion of own processor
has own PC, registers, etc.
typically implemented by potentially sharing processors

process = thread(s) + address space (illusion of “own machine”)
as if separated from other programs

hardware:Unix OS::exceptions::signals
signal handlers called by OS interrupting thread
way for OS to ask program for help; often “forward” exception

3

anonymous feedback (1)
“All but 3 TAs left within the first 30 minutes of lab.”

think this is 6:30pm lab
only 3 TAs assigned to that lab (others staying late for 5pm)

“Rice 442 can get quite confusing during office hours. There are a
lot of students getting help from a lot of different classes and it is
loud/tight space. Is there any chance there be more options for
discord oh or a different room in rice specifically for CSO2?”

I’m hoping sign up (on whiteboard wall or using online queue) makes
this not too bad
we could do other room in Rice Friday afternoon if needed…

4

anonymous feedback (2a)
“Is it possible to have access to some more practice with lecture topics? The exercises we do in class are

helpful, but there are so few of them that getting to the quizzes, even after reviewing slides/readings, feels

like a huge jump. I feel like I’m not getting enough exposure to the topics (examples, questions, etc)

before getting to quizzes - and because they are so high stakes (30% of overall grade) making mistakes

doesn’t feel like it is supporting my learning.”

“The quizzes feel very tricky. I do the readings and pay attention in class, is there anything else I can do

to help prepare? Any suggestions for improving understanding for the type of questions asked on the

quizzes?”

“This quiz feels extremely hard, given what we learned in class. I also do the reading, but it just feels very

hard.”

5

anonymous feedback (2b)
“Can you provide more practice questions and class examples that are similar in difficulty to the quiz

questions? I understand that we should be applying what we learn in the quiz but the first two have gone

into much more detail than is provided in lectures or readings. I attend class and do all of the readings but

I often find that the quiz content is still extremely difficult and not covered in class”

“I have really struggled with this second quiz despite attending lectures, reading the suggested readings,

and some additional readings linked in the suggested readings. Are there any resources that you suggest

we utilize moving forward?”

6

anonymous feedback (3)
“I was hoping you could be more consistent with the readings and
the slides. There is a lot of discrepancy between information on the
notes and the slides, as well as a lack of explanation for key
concepts as they are at a high level, whereas assignments go into a
much deeper level.”

Kinda intentional that readings + slides present things differently

I can make guesses as to what’s unclear/seems contradictory, but…
hard to do much with few specifics

7

on quiz review generally
seems people weren’t as comfortable re: exceptions as I thought

also some questions had corner cases/other interpretations I didn’t
anticipate

more generally:
have past quizzes as additional examples (‘study materials’ on website)
longer-term I should add more examples to readings
follow-up Qs on Piazza/office hours/etc. good ideas

8

quiz Q1
A: updating implementation requires modifying fewer files

syscall: one file to update — compiled copy of printf code in OS kernel
(yes, need a reboot to do this, probably)

dynamic library: one file to update — C library .so file
static library: relink every program that uses printf

B: cannot read args from stack
can still access user stack in kernel mode

D: display to screen without kernel mode
usually accessing I/O only happens in kernel mode
(yes, exceptions, but not very common)

9

quiz Q2 (context switches)
SSH client running

long computation running, +1 context switch

terminal running, +1 context switch

SSH running, +1 context switch

10

anonymous feedback (3)
“Can you be a little more clear about system calls and non system
calls + examples because there seems to be a lot of overlap”

key difference: why did OS start running
what OS does doesn’t tell you
(but could be hint)

11

quiz Q3 (non-syscall except)
usually no on outputting data

need to get to kernel mode,
but usually HW doesn’t tell you when to output
some exceptions, e.g., if need to wait for
network/disk to be ready

usually for getting external input
need to HW to say there is input

not for keypress getting from terminal to SSH client
OS handles sending data, don’t need processor help

12

quiz Q4 (syscall started)
Y: output data to I/O device/other program (1, 5, 6, 8)

Y: ask to wait to receive data (2)

N: for switching to other program after starting to wait (3)
system call happened earlier, being finished (not started)

N: for receiving data that was asked for earlier (4):
system call happened earlier, being finished (not started)

13

quiz Q5
out-of-bounds access triggers exception to run OS

Linux-like OS might decide to run signal handler
(but hardware doesn’t know how to do that)

14

signal API
sigaction — register handler for signal

kill — send signal to process
uses process ID (integer, retrieve from getpid())

pause — put process to sleep until signal received

sigprocmask — temporarily block/unblock some signals from
being received

signal will still be pending, received if unblocked

… and much more

15

kill command
kill command-line command : calls the kill() function

kill 1234 — sends SIGTERM to pid 1234
in C: kill(1234, SIGTERM)

kill -USR1 1234 — sends SIGUSR1 to pid 1234
in C: kill(1234, SIGUSR1)

16

SA_RESTART
struct sigaction sa; …
sa.sa_flags = SA_RESTART;

general version:
sa.sa_flags = SA_NAME | SA_NAME | SA_NAME; (or 0)

if SA_RESTART included:
after signal handler runs, attempt to restart interrupted operations (e.g.
reading from keyboard)

if SA_RESTART not included:
after signal handler runs, interrupted operations return typically an error
(errno == EINTR)

17

output of this?

void handle_usr1(int num) {
write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);
kill(1000, SIGUSR1);

}

pid 1000
void handle_usr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act, NULL);

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 18

output of this? (v2)
void handle_usr1(int num) {

write(1, "X", 1);
kill(2000, SIGUSR1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act);
kill(1000, SIGUSR1);
while (1) pause();

}

pid 1000
void handle_usr1(int num) {

write(1, "Y", 1);
_exit(0);

}

int main() {
struct sigaction act;
act.sa_handler = &handle_usr1;
sigaction(SIGUSR1, &act);
while (1) pause();

}

pid 2000

If these run at same time, expected output?
A. XY B. X C. Y
D. YX E. X or XY, depending on timing F. crash
G. (nothing) H. something else 19

x86-64 Linux signal delivery (1)
suppose: signal (with handler) happens while foo() is running

should stop in the middle of foo()

do signal handler

go back to foo() without…

changing local variables (possibly in registers)

(and foo() doesn’t have code to do that)

20

x86-64 Linux signal delivery (1)
suppose: signal (with handler) happens while foo() is running

should stop in the middle of foo()

do signal handler

go back to foo() without…

changing local variables (possibly in registers)

(and foo() doesn’t have code to do that)

20

x86-64 Linux signal delivery (2)
suppose: signal (with handler) happens while foo() is running

OS saves registers to user stack

OS modifies user registers, PC to call signal handler

address of __restore_rt
saved registers
PC when signal happened
local variables for foo…

the stack

stack pointer
before signal delivered

stack pointer
when signal handler started

21

x86-64 Linux signal delivery (3)
handle_sigint:

...
ret

...
__restore_rt:

// 15 = "sigreturn" system call
movq $15, %rax
syscall

__restore_rt is return address for signal handler
sigreturn syscall restores pre-signal state

if SA_RESTART set, restarts interrupted operation
also handles caller-saved registers
also might change which signals blocked (depending how sigaction was
called) 22

signal handler unsafety (0)
void foo() {

/* SIGINT might happen while foo() is running */
char *p = malloc(1024);
...

}

/* signal handler for SIGINT
(registered elsewhere with sigaction() */

void handle_sigint() {
printf("You pressed control-C.\n");

}

23

signal handler unsafety (1)
void *malloc(size_t size) {

...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You pressed control-C.\n");

} 24

signal handler unsafety (1)
void *malloc(size_t size) {

...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You pressed control-C.\n");

} 24

signal handler unsafety (2)
void handle_sigint() {

printf("You pressed control-C.\n");
}

int printf(...) {
static char *buf;
...
buf = malloc()
...

}

25

signal handler unsafety: timeline
foo starts

malloc: to_return = next_to_return;

handle_sigint

printf

malloc: to_return = next_to_return;
malloc: next_to_return += ...;

printf: store/use returned buf

foo: malloc returns pointer printf is using!
26

signal handler unsafety (3)
foo() {

char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You pressed control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

27

signal handler unsafety (3)
foo() {

char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */

printf("You pressed control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}
...

}
}
next_to_return += size;
return to_return;

}
/* now p points to buf used by printf! */

}

27

signal handler safety
POSIX (standard that Linux follows) defines “async-signal-safe”
functions

these must work correctly no matter what they interrupt

…and no matter how they are interrupted

includes: write, _exit

does not include: printf, malloc, exit

28

blocking signals
avoid having signal handlers anywhere:

can instead block signals
sigprocmask(), pthread_sigmask()

blocked = signal handled doesn’t run
signal not delivered

instead, signal becomes pending

29

controlling when signals are handled
first, block a signal

then use API for inspecting pending signals
example: sigwait
typically instead of having signal handler

and/or unblock signals only at certain times
some special functions to help:
sigsuspend (unblock until handler runs),
pselect (unblock while checking for I/O), …

30

synchronous signal handling
int main(void) {

sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);
sigprocmask(SIG_BLOCK, &set, NULL);

printf("Waiting for SIGINT (control-C)\n");
int num;
if (sigwait(&set, &num) != 0) {

printf("sigwait failed!\n");
}
if (num == SIGINT);

printf("Got SIGINT\n");
}

} 31

backup slides

32

signals
Unix-like operating system feature
like exceptions for processes:

can be triggered by external process
kill command/system call

can be triggered by special events
pressing control-C
other events that would normal terminate program

‘segmentation fault’
illegal instruction
divide by zero

can invoke signal handler (like exception handler)
33

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

34

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

34

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

34

exceptions v signals
(hardware) exceptions signals
handler runs in kernel mode handler runs in user mode
hardware decides when OS decides when
hardware needs to save PC OS needs to save PC + registers
processor next instruction changes thread next instruction changes

…but OS needs to run to trigger handler
most likely “forwarding” hardware exception

signal handler follows normal calling convention
not special assembly like typical exception handler

signal handler runs in same thread (‘virtual processor’)
as process was using before

not running at ‘same time’ as the code it interrupts

34

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

35

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

35

base program
int main() {

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
(program terminates immediately)

35

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

36

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

36

new program
int main() {

... // added stuff shown later
char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}

some input
read some input
more input
read more input
(control-C pressed)
Control-C pressed?!
another input read another input

36

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
37

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
37

example signal program
void handle_sigint(int signum) {

/* signum == SIGINT */
write(1, "Control-C pressed?!\n",

sizeof("Control-C pressed?!\n"));
}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read %s", buf);
}

}
37

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

38

SIGxxxx
signals types identified by number…

constants declared in <signal.h>
constant likely use
SIGBUS “bus error”; certain types of invalid memory accesses
SIGSEGV “segmentation fault”; other types of invalid memory accesses
SIGINT what control-C usually does
SIGFPE “floating point exception”; includes integer divide-by-zero
SIGHUP, SIGPIPE reading from/writing to disconnected terminal/socket
SIGUSR1, SIGUSR2 use for whatever you (app developer) wants
SIGKILL terminates process (cannot be handled by process!)
SIGSTOP suspends process (cannot be handled by process!)
… …

38

	signals
	signal API
	SA_RESTART
	exercise
	delivery
	caution: signal-safety
	alt signal handling

	backup slides
	re: signals
	example / sigaction
	signal IDs/events

