
1

last time
multi-level page tables

tree data structure
don’t have entries for large empty spaces

several layers of page tables
earlier page tables contain location of next page table
can be marked invalid in early levels — save space

divide virtual page number into parts

2

anonymous feedback (1)
“In the previous class, there was a comment regarding the desire for a longer quiz with
questions of lower point values. However, there was also a concern about not making the
quiz excessively lengthy. I believe a good way to strike a balance in question weight is to
incorporate more questions of an easier difficulty level. This approach would provide us with
additional practice without dedicating too much time to each question, while also allowing
us to earn extra points. For instance, the first two questions on the last quiz served as
excellent practice and enabled us to assess our knowledge without being overly challenging.”

probably a question complexity (not quite same as difficulty) issue
for some topics, need to have questions not be bare recall from
lecture/reading
or ‘run this and see what the output is’ limits “minimum” complexity

e.g. need to have context re: commands used to build a program for makefile
questions
don’t want questions where answer is “in the question” 3

running a program

Used by OS

Some program

Stack

Heap / other dynamic
Writable data

Code + Constants

OS’s memory

4

running a program

Used by OS

Some program

Stack

Heap / other dynamic
Writable data

Code + Constants

OS’s memory

4

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

5

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?

probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

5

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

5

switching page tables
part of context switch is changing the page table

extra privileged instructions

where in memory is the code that does this switching?
probably have a page table entry pointing to it
hopefully marked kernel-mode-only

code better not be modified by user program
otherwise: uncontrolled way to “escape” user mode

5

vim (two copies)

Used by OS

Vim (run by user mst3k)

Stack

Heap / other dynamic
Writable data

vim (Code + Constants)

Used by OS

Vim (run by user xyz4w)

Stack

Heap / other dynamic

Writable data
vim (Code + Constants)

same data?

6

vim (two copies)

Used by OS

Vim (run by user mst3k)

Stack

Heap / other dynamic
Writable data

vim (Code + Constants)

Used by OS

Vim (run by user xyz4w)

Stack

Heap / other dynamic

Writable data
vim (Code + Constants)

same data?
6

two copies of program
would like to only have one copy of program

what if mst3k’s vim tries to modify its code?

would break process abstraction:
“illusion of own memory”

7

permissions bits
page table entry will have more permissions bits

can access in user mode?
can read from?
can write to?
can execute from?

checked by MMU like valid bit

virtual page # valid? user? write? exec? physical page #
0000 0000 0 0 0 0 00 0000 0000
0000 0001 1 1 1 0 10 0010 0110
0000 0010 1 1 1 0 00 0000 1100
0000 0011 1 1 0 1 11 0000 0011…
1111 1111 1 0 1 0 00 1110 1000

page table (logically)

8

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

9

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

9

space on demand

Used by OS

Program Memory

Stack

Heap / other dynamic
Writable data

Code + Constants

used stack space (12 KB)

wasted space? (huge??)

OS would like to allocate space only if needed

9

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physicalpage
… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

10

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physicalpage
… … …
0x7FFFB 0 ---
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

10

allocating space on demand

...
// requires more stack space
A: pushq %rbx

B: movq 8(%rcx), %rbx
C: addq %rbx, %rax
...

%rsp = 0x7FFFC000

VPN valid? physicalpage
… … …
0x7FFFB 1 0x200D8
0x7FFFC 1 0x200DF
0x7FFFD 1 0x12340
0x7FFFE 1 0x12347
0x7FFFF 1 0x12345… … …

pushq triggers exception
hardware says “accessing address 0x7FFFBFF8”
OS looks up what’s should be there — “stack”

page fault!

in exception handler, OS allocates more stack space
OS updates the page table
then returns to retry the instruction

restarted

10

allocating space on demand
note: the space doesn’t have to be initially empty

only change: load from file, etc. instead of allocating empty page

loading program can be merely creating empty page table

everything else can be handled in response to page faults
no time/space spent loading/allocating unneeded space

11

page tricks generally
deliberately make program trigger page/protection fault

but don’t assume page/protection fault is an error

have seperate data structures represent logically allocated memory
e.g. “addresses 0x7FFF8000 to 0x7FFFFFFFF are the stack”

page table is for the hardware and not the OS

12

hardware help for page table tricks
information about the address causing the fault

e.g. special register with memory address accessed
harder alternative: OS disassembles instruction, look at registers

(by default) rerun faulting instruction when returning from
exception

precise exceptions: no side effects from faulting instruction or after
e.g. pushq that caused did not change %rsp before fault
e.g. can’t notice if instructions were executed in parallel

13

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

14

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

15

fork
pid_t fork() — copy the current process

returns twice:
in parent (original process): pid of new child process
in child (new process): 0

everything (but pid) duplicated in parent, child:
memory
file descriptors (later)
registers

16

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

17

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

copy

17

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

17

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=42,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

17

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

17

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only
can’t be shared?

18

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants
shared as read-only

can’t be shared?

18

do we really need a complete copy?

Used by OS
bash

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

new copy of bash

Stack

Heap / other dynamic
Writable data

Code + Constants

shared as read-only

can’t be shared?

18

trick for extra sharing
sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

19

trick for extra sharing
sharing writeable data is fine — until either process modifies it

example: default value of global variables
might typically not change
(or OS might have preloaded executable’s data anyways)

can we detect modifications?

trick: tell CPU (via page table) shared part is read-only

processor will trigger a fault when it’s written

19

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 1 0x12345
0x00602 1 1 0x12347
0x00603 1 1 0x12340
0x00604 1 1 0x200DF
0x00605 1 1 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

20

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page
after allocating a copy, OS reruns the write instruction

20

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

20

copy-on-write and page tables
VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 0 0x200AF
… … … …

VPN valid? write?physicalpage
… … … …
0x00601 1 0 0x12345
0x00602 1 0 0x12347
0x00603 1 0 0x12340
0x00604 1 0 0x200DF
0x00605 1 1 0x300FD
… … … …

copy operation actually duplicates page table
both processes share all physical pages
but marks pages in both copies as read-only

when either process tries to write read-only page
triggers a fault — OS actually copies the page

after allocating a copy, OS reruns the write instruction

20

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-onlyshared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

21

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

21

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared

←on parent
write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

21

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-only

shared
read-only

copied
for
parent’s
write

←no longer
shared

←on parent
write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

21

fork (w/ copy-on-write, if parent writes first)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

shared
read-onlyshared
read-only

copied
for
parent’s
write

←no longer
shared
←on parent

write

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy

21

fork and process info (w/o copy-on-write)

user regs rax (return val.)=42child pid,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

parent process info memory

user regs rax (return val.)=420,
rcx=133, …

page tables
open files fd 0: …

fd 1: …
… …

child process infocopy copy

22

fork example
// not shown: #include various headers
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n",

(int) my_pid,
(int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n",

(int) my_pid);
} else {

perror("Fork failed");
}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errnofork()

parent pid: …

parent of …
child …

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

23

fork example
// not shown: #include various headers
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n",

(int) my_pid,
(int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n",

(int) my_pid);
} else {

perror("Fork failed");
}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errnofork()

parent pid: …

parent of …
child …

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

23

fork example
// not shown: #include various headers
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n",

(int) my_pid,
(int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n",

(int) my_pid);
} else {

perror("Fork failed");
}
return 0;

}

getpid — returns current process pid

cast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errnofork()

parent pid: …

parent of …
child …

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

23

fork example
// not shown: #include various headers
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n",

(int) my_pid,
(int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n",

(int) my_pid);
} else {

perror("Fork failed");
}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

fork()

parent pid: …

parent of …
child …

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

23

fork example
// not shown: #include various headers
int main(int argc, char *argv[]) {

pid_t pid = getpid();
printf("Parent pid: %d\n", (int) pid);
pid_t child_pid = fork();
if (child_pid > 0) {

/* Parent Process */
pid_t my_pid = getpid();
printf("[%d] parent of [%d]\n",

(int) my_pid,
(int) child_pid);

} else if (child_pid == 0) {
/* Child Process */
pid_t my_pid = getpid();
printf("[%d] child\n",

(int) my_pid);
} else {

perror("Fork failed");
}
return 0;

}

getpid — returns current process pidcast in case pid_t isn’t int
POSIX doesn’t specify (some systems it is, some not…)
(not necessary if you were using C++’s cout, etc.)

prints out Fork failed: error message
(example error message: “Resource temporarily unavailable”)
from error number stored in special global variable errno

fork()

parent pid: …

parent of …
child …

Example output:
Parent pid: 100
[100] parent of [432]
[432] child

23

a fork question
int main() {

pid_t pid = fork();
if (pid == 0) {

printf("In child\n");
} else {

printf("Child %d\n", pid);
}
printf("Done!\n");

}

Exercise: Suppose the pid of the parent process is 99 and child is 100. Give two
possible outputs. (Assume no crashes, etc.)

parent child parent child parent

Child 100
In child
Done!
Done!

parent child parent

In child
Done!
Child 100
Done!

24

a fork question
int main() {

pid_t pid = fork();
if (pid == 0) {

printf("In child\n");
} else {

printf("Child %d\n", pid);
}
printf("Done!\n");

}

Exercise: Suppose the pid of the parent process is 99 and child is 100. Give two
possible outputs. (Assume no crashes, etc.)

parent child parent child parent

Child 100
In child
Done!
Done!

parent child parent

In child
Done!
Child 100
Done! 24

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

25

exec*
exec* — replace current program with new program

* — multiple variants
same pid, new process image

int execv(const char *path, const char
**argv)

path: new program to run
argv: array of arguments, termianted by null pointer

also other variants that take argv in different form and/or
environment variables*

*environment variables = list of key-value pairs

26

execv example
...
child_pid = fork();
if (child_pid == 0) {

/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’)

27

execv example
...
child_pid = fork();
if (child_pid == 0) {

/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’)

27

execv example
...
child_pid = fork();
if (child_pid == 0) {

/* child process */
char *args[] = {"ls", "-l", NULL};
execv("/bin/ls", args);
/* execv doesn't return when it works.

So, if we got here, it failed. */
perror("execv");
exit(1);

} else if (child_pid > 0) {
/* parent process */
...

}

used to compute argv, argc
when program’s main is run

convention: first argument is program name

path of executable to run
need not match first argument
(but probably should match it)

on Unix /bin is a directory
containing many common programs,
including ls (‘list directory’) 27

exec in the kernel

user regs eax=42,
ecx=133, …

pagetables
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

28

exec in the kernel

user regs eax=42init. val.,
ecx=133init. val., …

pagetables
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

28

exec in the kernel

user regs eax=42init. val.,
ecx=133init. val., …

pagetables
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

28

exec in the kernel

user regs eax=42init. val.,
ecx=133init. val., …

pagetables
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

28

exec in the kernel

user regs eax=42init. val.,
ecx=133init. val., …

pagetables
open files fd 0: (terminal …)

fd 1: …
… …

the process control block memory

loaded from
executable file

new stack, heap, …

copy arguments

not changed!
(more on this later)

old memory
discarded

28

why fork/exec?
could just have a function to spawn a new program

Windows CreateProcess(); POSIX’s (rarely used) posix_spawn

some other OSs do this (e.g. Windows)
needs to include API to set new program’s state

e.g. without fork: either:
need function to set new program’s current directory, or
need to change your directory, then start program, then change back
e.g. with fork: just change your current directory before exec

but allows OS to avoid ‘copy everything’ code
probably makes OS implementation easier

29

posix_spawn
pid_t new_pid;
const char argv[] = { "ls", "-l", NULL };
int error_code = posix_spawn(

&new_pid,
"/bin/ls",
NULL /* null = copy current process's open files;

if not null, do something else */,
NULL /* null = no special settings for new process */,
argv,
NULL /* null = copy current process's "environment variables",

if not null, do something else */
);
if (error_code == 0) {

/* handle error */
} 30

some opinions (via HotOS ’19)

31

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

32

wait/waitpid
pid_t waitpid(pid_t pid, int *status,

int options)

wait for a child process (with pid=pid) to finish

sets *status to its “status information”

pid=-1 → wait for any child process instead

options? see manual page (command man waitpid)
0 — no options

33

waitpid example
#include <sys/wait.h>
...
child_pid = fork();
if (child_pid > 0) {

/* Parent process */
int status;
waitpid(child_pid, &status, 0);

} else if (child_pid == 0) {
/* Child process */
...

34

typical pattern
parent

fork

waitpid

child process

exec

exit()

35

typical pattern (alt)
parent

fork

waitpid

child process

exec

exit()

36

typical pattern (detail)

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

pid = fork();
if (pid == 0) {

exec…(…);
…

} else if (pid > 0) {
waitpid(pid,…);
…

}
…

main() {
…

}

37

POSIX process management
essential operations

process information: getpid

process creation: fork

running programs: exec*
also posix_spawn (not widely supported), …

waiting for processes to finish: waitpid (or wait)

process destruction, ‘signaling’: exit, kill

38

backup slides

39

assignment part 2/3
supporting arbitrary numbers of LEVELS, POBITS

code review in lab after reading days
limited allowed collaboration

40

pa = translate(va) [LEVELS=2]

PTBR0x05898
0x10000

0x10000 + VPN1×8

0x20×page size

0x20× page size + VPN2×8

0x23×page size

physical page 0x20

physical page 0x23

virtual page number part 1 from va
PPN = 0x20 unused valid = 1

virtual page number part 2 from va

PPN = 0x23 unused valid = 1

page offset from va
translate(va)

first page_allocate(va) [LEVELS=2]

PTBR0x05898

NEW0
NEW0 + VPN1×8

NEW1×page size

NEW1× page size + VPN2×8

NEW2×page size

physical page NEW1

physical page NEW2

virtual page number part 1 from va
PPN = — unused valid = 0

virtual page number part 2 from va

PPN = — unused valid = 0

page offset from va
translate(va)

first page_allocate(va) [LEVELS=2]

PTBR0x05898

NEW0
NEW0 + VPN1×8

NEW1×page size

NEW1× page size + VPN2×8

NEW2×page size

physical page NEW1

physical page NEW2

virtual page number part 1 from va
PPN = — unused valid = 0

virtual page number part 2 from va

PPN = — unused valid = 0

page offset from va
translate(va)

first page_allocate(va) [LEVELS=2]

PTBR0x05898
NEW0

NEW0 + VPN1×8

NEW1×page size

NEW1× page size + VPN2×8

NEW2×page size

physical page NEW1

physical page NEW2

virtual page number part 1 from va
PPN = NEW1 unused valid = 1

virtual page number part 2 from va

PPN = — unused valid = 0

page offset from va
translate(va)

first page_allocate(va) [LEVELS=2]

PTBR0x05898
NEW0

NEW0 + VPN1×8

NEW1×page size

NEW1× page size + VPN2×8

NEW2×page size

physical page NEW1

physical page NEW2

virtual page number part 1 from va
PPN = NEW1 unused valid = 1

virtual page number part 2 from va

PPN = NEW2 unused valid = 1

page offset from va
translate(va)

first page_allocate(va) [LEVELS=2]

PTBR0x05898
NEW0

NEW0 + VPN1×8

NEW1×page size

NEW1× page size + VPN2×8

NEW2×page size

physical page NEW1

physical page NEW2

virtual page number part 1 from va
PPN = NEW1 unused valid = 1

virtual page number part 2 from va

PPN = NEW2 unused valid = 1

page offset from va
translate(va)

later page allocates?
some of those allocations done earlier

e.g. ptbr already set

should reuse existing allocation then

43

x86-64 page table entries (1)

present = valid

R/W = writes allowed?

U/S = user-mode allowed? (“user/supervisor”)

XD = execute-disable?

A = accessed? (MMU sets to 1 on page read/write)

D = dirty? (MMU sets to 1 on page write)

helps support replacement policies for swapping
helps support writeback policy for swapping

44

x86-64 page table entries (1)

present = valid

R/W = writes allowed?

U/S = user-mode allowed? (“user/supervisor”)

XD = execute-disable?

A = accessed? (MMU sets to 1 on page read/write)

D = dirty? (MMU sets to 1 on page write)helps support replacement policies for swapping

helps support writeback policy for swapping

44

x86-64 page table entries (1)

present = valid

R/W = writes allowed?

U/S = user-mode allowed? (“user/supervisor”)

XD = execute-disable?

A = accessed? (MMU sets to 1 on page read/write)

D = dirty? (MMU sets to 1 on page write)

helps support replacement policies for swapping

helps support writeback policy for swapping 44

x86-64 page table entries (2)

G = global? (shared between all page tables)

PWT, PCD, PAT = control how caches work when accessing physical page:
can disable using the cache entirely
can disable write-back (use write-through instead)
multicore-related cache settings
(and some other settings)

CPU won’t evict TLB entries on most page table base registers changes

45

x86-64 page table entries (2)

G = global? (shared between all page tables)

PWT, PCD, PAT = control how caches work when accessing physical page:
can disable using the cache entirely
can disable write-back (use write-through instead)
multicore-related cache settings
(and some other settings)

CPU won’t evict TLB entries on most page table base registers changes

45

pa=translate(va)
11 0101 01 00 1101 1111va

× PTE size

0x10000

page table
base register

ptbr
+

memory

1101 0011 11

check valid bit/etc.

split PTE parts

cause fault?

00 1101 1111
pa

physical address

virtual address

page_allocate(va) needs to
make translate(va) work

set by page_allocate
if needed

46

pa=translate(va)
11 0101 01 00 1101 1111va

× PTE size

0x10000

page table
base register

ptbr
+

memory

1101 0011 11

check valid bit/etc.

split PTE parts

cause fault?

00 1101 1111
pa

physical address

virtual address

page_allocate(va) needs to
make translate(va) work

set by page_allocate
if needed

46

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

47

toy program memory

code

data/heap

empty/more heap?

stack

00 0000 0000 = 0x000

01 0000 0000 = 0x100

10 0000 0000 = 0x200

11 0000 0000 = 0x300

11 1111 1111 = 0x3FF

virtual page# 0

virtual page# 1

virtual page# 2

virtual page# 3

divide memory into pages (28 bytes in this case)
“virtual” = addresses the program sees

page number is upper bits of address
(because page size is power of two)

rest of address is called page offset

47

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

48

toy physical memory

program memory
virtual addresses

00 0000 0000 to
00 1111 1111

01 0000 0000 to
01 1111 1111

10 0000 0000 to
10 1111 1111

11 0000 0000 to
11 1111 1111

real memory
physical addresses

000 0000 0000 to
000 1111 1111

001 0000 0000 to
001 1111 1111

111 0000 0000 to
111 1111 1111

physical page 0
physical page 1

physical page 7

virtual page # physical page #
00 010 (2)
01 111 (7)
10 none
11 000 (0)

page
table!

48

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”“page offset”

“page offset”

49

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

49

toy page table lookup

virtual
page #valid? physical page # read

OK?
write
OK?

00 1 010 (2, code) 1 0
01 1 111 (7, data) 1 1
10 0 ??? (ignored) 0 0
11 1 000 (0, stack) 1 1

01 1101 0010 — address from CPU

trigger exception if 0?

111 1101 0010

to memory

“page
table
entry”

“virtual page number”

“physical page number”

“page offset”

“page offset”

49

exit statuses
int main() {

return 0; /* or exit(0); */
}

50

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

51

the status
#include <sys/wait.h>
...
waitpid(child_pid, &status, 0);
if (WIFEXITED(status)) {
printf("main returned or exit called with %d\n",

WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {
printf("killed by signal %d\n", WTERMSIG(status));

} else {
...

}

“status code” encodes both return value and if exit was abnormal
W* macros to decode it

51

shell
allow user (= person at keyboard) to run applications

user’s wrapper around process-management functions

52

aside: shell forms
POSIX: command line you have used before

also: graphical shells
e.g. OS X Finder, Windows explorer

other types of command lines?

completely different interfaces?

53

searching for programs
POSIX convention: PATH environment variable

example: /home/cr4bd/bin:/usr/bin:/bin
list of directories to check in order

environment variables = key/value pairs stored with process
by default, left unchanged on execve, fork, etc.

one way to implement: [pseudocode]
for (directory in path) {

execv(directory + "/" + program_name, argv);
}

54

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

55

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

56

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

56

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

56

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

56

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

56

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

57

layering
application

standard library

system calls

kernel’s file interface

device drivers

hardware interfaces

kernel’s buffers

read/write

cout/printf — and their own buffers

58

why the extra layer
better (but more complex to implement) interface:

read line
formatted input (scanf, cin into integer, etc.)
formatted output

less system calls (bigger reads/writes) sometimes faster
buffering can combine multiple in/out library calls into one system call

more portable interface
cin, printf, etc. defined by C and C++ standards

59

exercise
pid_t p = fork();
int pipe_fds[2];
pipe(pipe_fds);
if (p == 0) { /* child */

close(pipe_fds[0]);
char c = 'A';
write(pipe_fds[1], &c, 1);
exit(0);

} else { /* parent */
close(pipe_fds[1]);
char c;
int count = read(pipe_fds[0], &c, 1);
printf("read %d bytes\n", count);

}

The child is trying to send the character A to the parent, but the
above code outputs read 0 bytes instead of read 1 bytes.
What happened?

60

exercise solution
pipe() is after fork — two pipes, one in child, one in parent

61

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

62

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

62

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()

read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

62

pipe example (1)
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error(); /* e.g. out of file descriptors */
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
child_pid = fork();
if (child_pid == 0) {

/* in child process, write to pipe */
close(read_fd);
write_to_pipe(write_fd); /* function not shown */
exit(EXIT_SUCCESS);

} else if (child_pid > 0) {
/* in parent process, read from pipe */
close(write_fd);
read_from_pipe(read_fd); /* function not shown */
waitpid(child_pid, NULL, 0);
close(read_fd);

} else { /* fork error */ }

‘standard’ pattern with fork()read() will not indicate
end-of-file if write fd is open
(any copy of it)

have habit of closing
to avoid ‘leaking’ file descriptors
you can run out

62

pipe() and blocking
BROKEN example:
int pipe_fd[2];
if (pipe(pipe_fd) < 0)

handle_error();
int read_fd = pipe_fd[0];
int write_fd = pipe_fd[1];
write(write_fd, some_buffer, some_big_size);
read(read_fd, some_buffer, some_big_size);

This is likely to not terminate. What’s the problem?

63

pattern with multiple?
parent

fork

fork

waitpid(first,…)

first child process

second child process
exec

exit()

exec
exit()

waitpid(second,…) 64

this class: focus on Unix
Unix-like OSes will be our focus

we have source code

used to from 2150, etc.?

have been around for a while

xv6 imitates Unix

65

Unix history

OpenServer
6.x

UnixWare
7.x

(System V
R5)

HP-UX
11i+

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

Open Source

Mixed/Shared Source

Closed Source

No future releases

HP-UX
1.0 to 1.2

OpenSolaris
& derivatives

(illumos, etc.)

System III

System V
R1 to R2

OpenServer
5.0.5 to 5.0.7

OpenServer
5.0 to 5.04

SCO Unix
3.2.4

SCO Xenix
V/386

SCO Xenix
V/386

SCO Xenix
V/286

SCO Xenix

Xenix
3.0

Xenix
1.0 to 2.3

PWB/Unix

AIX
1.0

AIX
3.0-7.2

OpenBSD
2.3-6.1

OpenBSD
1.0 to 2.2

SunOS
1.2 to 3.0

SunOS
1 to 1.1

Unix/32V

Unix
Version 1 to 4

Unix
Version 5 to 6

Unix
Version 7

Unnamed PDP-7 operating system

BSD
1.0 to 2.0

BSD
3.0 to 4.1

BSD 4.2

Unix
Version 8

Unix
9 and 10

(last versions
from

Bell Labs)

NexTSTEP/
OPENSTEP
1.0 to 4.0

Mac OS X
Server

Mac OS X,
OS X,

macOS
10.0 to 10.12

(Darwin
1.2.1 to 17)

Minix
1.x

Minix
2.x

Minix
3.1.0-3.4.0

Linux
2.x

Linux
0.95 to 1.2.x

Linux 0.0.1

BSD
4.4 to

4.4 lite2

NetBSD
0.8 to 1.0

NetBSD
1.1 to 1.2

NetBSD 1.3

NetBSD
1.3-7.1

FreeBSD
1.0 to
2.2.x

386BSD

BSD NET/2

Solaris
10

Solaris
11.0-11.3

System V
R4

Solaris
2.1 to 9

BSD 4.3

SunOS
4

HP-UX
2.0 to 3.0

HP-UX
6 to 11

System V
R3

UnixWare
1.x to 2.x
(System V

R4.2)

BSD 4.3
Tahoe

BSD 4.3
Reno

FreeBSD
3.0 to 3.2

FreeBSD
3.3-11.x

Linux
3.x

Linux
4.x OpenServer

10.x

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001 to 2004

2006 to 2007

2008

2005

2009

2010

2011

2012 to 2015

2016

2017

DragonFly
BSD

1.0 to 4.8

image: Wikpedia/Eraserhead1+Infinity0+Sav_vas 66

POSIX: standardized Unix
Portable Operating System Interface (POSIX)

“standard for Unix”

current version online:
https://pubs.opengroup.org/onlinepubs/9699919799/

(almost) followed by most current Unix-like OSes

…but OSes add extra features

…and POSIX doesn’t specify everything

67

what POSIX defines
POSIX specifies the library and shell interface

source code compatibility

doesn’t care what is/is not a system call…

doesn’t specify binary formats…

idea: write applications for POSIX, recompile and run on all
implementations

this was a very important goal in the 80s/90s
at the time, no dominant Unix-like OS (Linux was very immature)

68

getpid
pid_t my_pid = getpid();
printf("my pid is %ld\n", (long) my_pid);

69

process ids in ps
cr4bd@machine:~$ ps

PID TTY TIME CMD
14777 pts/3 00:00:00 bash
14798 pts/3 00:00:00 ps

70

read/write
ssize_t read(int fd, void *buffer, size_t count);
ssize_t write(int fd, void *buffer, size_t count);

read/write up to count bytes to/from buffer

returns number of bytes read/written or -1 on error
ssize_t is a signed integer type
error code in errno

read returning 0 means end-of-file (not an error)
can read/write less than requested (end of file, broken I/O device, …)

72

read’ing one byte at a time
string s;
ssize_t amount_read;
char c;
/* cast to void * not needed in C */
while ((amount_read = read(STDIN_FILENO, (void*) &c, 1)) > 0) {

/* amount_read must be exactly 1 */
s += c;

}
if (amount_read == −1) {

/* some error happened */
perror("read"); /* print out a message about it */

} else if (amount_read == 0) {
/* reached end of file */

}
73

write example
/* cast to void * optional in C */
write(STDOUT_FILENO, (void *) "Hello, World!\n", 14);

74

aside: environment variables (1)
key=value pairs associated with every process:
$ printenv
MODULE_VERSION_STACK=3.2.10
MANPATH=:/opt/puppetlabs/puppet/share/man
XDG_SESSION_ID=754
HOSTNAME=labsrv01
SELINUX_ROLE_REQUESTED=
TERM=screen
SHELL=/bin/bash
HISTSIZE=1000
SSH_CLIENT=128.143.67.91 58432 22
SELINUX_USE_CURRENT_RANGE=
QTDIR=/usr/lib64/qt-3.3
OLDPWD=/zf14/cr4bd
QTINC=/usr/lib64/qt-3.3/include
SSH_TTY=/dev/pts/0
QT_GRAPHICSSYSTEM_CHECKED=1
USER=cr4bd
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lha=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.tlz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01;31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31:*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31:*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35:*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;35:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01;35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01;35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;35:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;35:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;35:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;36:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01;36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;36:*.oga=01;36:*.spx=01;36:*.xspf=01;36:
MODULE_VERSION=3.2.10
MAIL=/var/spool/mail/cr4bd
PATH=/zf14/cr4bd/.cargo/bin:/zf14/cr4bd/bin:/usr/lib64/qt-3.3/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/puppetlabs/bin:/usr/cs/contrib/bin:.
PWD=/zf14/cr4bd
LANG=en_US.UTF-8
MODULEPATH=/sw/centos/Modules/modulefiles:/sw/linux-any/Modules/modulefiles
LOADEDMODULES=
KDEDIRS=/usr
…
_=/usr/bin/printenv

75

aside: environment variables (2)
environment variable library functions:

getenv("KEY") → value
putenv("KEY=value") (sets KEY to value)
setenv("KEY", "value") (sets KEY to value)

int execve(char *path, char **argv, char **envp)

char *envp[] = { "KEY1=value1", "KEY2=value2", NULL };
char *argv[] = { "somecommand", "some arg", NULL };
execve("/path/to/somecommand", argv, envp);

normal exec versions — keep same environment variables

76

aside: environment variables (3)
interpretation up to programs, but common ones…

PATH=/bin:/usr/bin
to run a program ‘foo’, look for an executable in /bin/foo, then
/usr/bin/foo

HOME=/zf14/cr4bd
current user’s home directory is ‘/zf14/cr4bd’

TERM=screen-256color
your output goes to a ‘screen-256color’-style terminal

…
77

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses in order */
for (pid_t pid : pids) {

waitpid(pid, ...);
...

}
78

waiting for all children
#include <sys/wait.h>
...
while (true) {
pid_t child_pid = waitpid(−1, &status, 0);
if (child_pid == (pid_t) −1) {

if (errno == ECHILD) {
/* no child process to wait for */
break;

} else {
/* some other error */

}
}
/* handle child_pid exiting */

}

79

multiple processes?
while (...) {

pid = fork();
if (pid == 0) {

exec ...
} else if (pid > 0) {

pids.push_back(pid);
}

}

/* retrieve exit statuses as processes finish */
while ((pid = waitpid(−1, ...)) != −1) {

handleProcessFinishing(pid);
}

80

‘waiting’ without waiting
#include <sys/wait.h>
...
pid_t return_value = waitpid(child_pid, &status, WNOHANG);
if (return_value == (pid_t) 0) {
/* child process not done yet */

} else if (child_pid == (pid_t) −1) {
/* error */

} else {
/* handle child_pid exiting */

}

81

parent and child processes
every process (but process id 1) has a parent process
(getppid())
this is the process that can wait for it
creates tree of processes (Linux pstree command):

82

parent and child questions…
what if parent process exits before child?

child’s parent process becomes process id 1 (typically called init)

what if parent process never waitpid()s (or equivalent) for child?
child process stays around as a “zombie”
can’t reuse pid in case parent wants to use waitpid()

what if non-parent tries to waitpid() for child?
waitpid fails

83

exercise
int fd = open("output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666);
write(fd, "A", 1);
dup2(STDOUT_FILENO, 100);
dup2(fd, STDOUT_FILENO);
write(STDOUT_FILENO, "B", 1);
write(fd, "C", 1);
close(fd);
write(STDOUT_FILENO, "D", 1);
write(100, "E", 1);

Assume fd 100 is not what open returns. What is written to
output.txt?
A. ABCDE C. ABC E. something else
B. ABCD D. ACD

84

read’ing a fixed amount
ssize_t offset = 0;
const ssize_t amount_to_read = 1024;
char result[amount_to_read];
do {

/* cast to void * optional in C */
ssize_t amount_read =

read(STDIN_FILENO,
(void *) (result + offset),
amount_to_read − offset);

if (amount_read < 0) {
perror("read"); /* print error message */
... /* abort??? */

} else {
offset += amount_read;

}
} while (offset != amount_to_read && amount_read != 0);

85

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

86

partial reads
on regular file: read reads what you request

but otherwise: usually gives you what’s known to be available
after waiting for something to be available

reading from network — what’s been received

reading from keyboard — what’s been typed

86

write example (with error checking)
const char *ptr = "Hello, World!\n";
ssize_t remaining = 14;
while (remaining > 0) {

/* cast to void * optional in C */
ssize_t amount_written = write(STDOUT_FILENO,

ptr,
remaining);

if (amount_written < 0) {
perror("write"); /* print error message */
... /* abort??? */

} else {
remaining −= amount_written;
ptr += amount_written;

}
} 87

partial writes
usually only happen on error or interruption

but can request “non-blocking”
(interruption: via signal)

usually : write waits until it completes
= until remaining part fits in buffer in kernel
does not mean data was sent on network, shown to user yet, etc.

88

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3 read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read1

2 or

buffer: keyboard input
waiting for program

read char
from terminal

2

1 or

…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3

read char
from file

1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (reads)
program

operating system

keyboard disk

keypress happens, read12 or

buffer: keyboard input
waiting for program

read char
from terminal

21 or
…via buffer3 read char

from file
1

read block of data from disk2

buffer: recently read
data from disk

…via buffer3

89

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

90

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

90

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

90

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

90

kernel buffering (writes)
program

operating system

network disk

(when ready)
send data

buffer: output
waiting for network

print char
to remote machine

write char
to file

(when ready)
write block of data from disk

buffer: data waiting
to be written on disk

90

read/write operations
read()/write(): move data into/out of buffer

possibly wait if buffer is empty (read)/full (write)

actual I/O operations — wait for device to be ready
trigger process to stop waiting if needed

91

filesystem abstraction
regular files — named collection of bytes

also: size, modification time, owner, access control info, …

directories — folders containing files and directories
hierarchical naming: /net/zf14/cr4bd/fall2018/cs4414
mostly contains regular files or directories

92

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
...

int read_fd = open("dir/file1", O_RDONLY);
int write_fd = open("/other/file2",

O_WRONLY | O_CREAT | O_TRUNC, 0666);
int rdwr_fd = open("file3", O_RDWR);

93

open
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);
path = filename
e.g. "/foo/bar/file.txt"

file.txt in
directory bar in
directory foo in
“the root directory”

e.g. "quux/other.txt
other.txt in
directory quux in
“the current working directory” (set with chdir())

94

open: file descriptors
int open(const char *path, int flags);
int open(const char *path, int flags, int mode);

return value = file descriptor (or -1 on error)

index into table of open file descriptions for each process

used by system calls that deal with open files

95

POSIX: everything is a file
the file: one interface for

devices (terminals, printers, …)
regular files on disk
networking (sockets)
local interprocess communication (pipes, sockets)

basic operations: open(), read(), write(), close()

96

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 97

exercise
int pipe_fds[2]; pipe(pipe_fds);
pid_t p = fork();
if (p == 0) {

close(pipe_fds[0]);
for (int i = 0; i < 10; ++i) {
char c = '0' + i;
write(pipe_fds[1], &c, 1);

}
exit(0);

}
close(pipe_fds[1]);
char buffer[10];
ssize_t count = read(pipe_fds[0], buffer, 10);
for (int i = 0; i < count; ++i) {

printf("%c", buffer[i]);
}

Which of these are possible outputs (if pipe, read, write, fork don’t fail)?
A. 0123456789 B. 0 C. (nothing)
D. A and B E. A and C F. A, B, and C 98

empirical evidence
8 0

374 01
210 012
30 0123
12 01234
3 012345
1 0123456
2 01234567
1 012345678

359 0123456789

100

partial reads
read returning 0 always means end-of-file

by default, read always waits if no input available yet
but can set read to return error instead of waiting

read can return less than requested if not available
e.g. child hasn’t gotten far enough

101

pipe: closing?
if all write ends of pipe are closed

can get end-of-file (read() returning 0) on read end
exit()ing closes them

→ close write end when not using

generally: limited number of file descriptors per process

→ good habit to close file descriptors not being used

(but probably didn’t matter for read end of pipes in example)

102

swapping almost mmap
access mapped file for first time, read from disk

(like swapping when memory was swapped out)

write “mapped” memory, write to disk eventually
(like writeback policy in swapping)
use “dirty” bit

extra detail: other processes should see changes
all accesses to file use same physical memory

103

swapping
early motivation for virtual memory: swapping

using disk (or SSD, …) as the next level of the memory hierarchy
how our textbook and many other sources presents virtual memory

OS allocates program space on disk
own mapping of virtual addresses to location on disk

DRAM is a cache for disk

104

swapping
early motivation for virtual memory: swapping

using disk (or SSD, …) as the next level of the memory hierarchy
how our textbook and many other sources presents virtual memory

OS allocates program space on disk
own mapping of virtual addresses to location on disk

DRAM is a cache for disk

104

swapping components
“swap in” a page — exactly like allocating on demand!

OS gets page fault — invalid in page table
check where page actually is (from virtual address)
read from disk
eventually restart process

“swap out” a page
OS marks as invalid in the page table(s)
copy to disk (if modified)

105

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another programworth using expensive replacement policies to lower miss rate(plus other tricks, like prefetching, …)factor in why pages are as big as they are

106

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

worth using expensive replacement policies to lower miss rate(plus other tricks, like prefetching, …)factor in why pages are as big as they are

106

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another program

worth using expensive replacement policies to lower miss rate(plus other tricks, like prefetching, …)

factor in why pages are as big as they are

106

HDD/SDDs are slow
HDD reads and writes: milliseconds to tens of milliseconds

minimum size: 512 bytes
writing tens of kilobytes basically as fast as writing 512 bytes

SSD writes and writes: hundreds of microseconds
designed for writes/reads of kilobytes (not much smaller)

page fault handler is going switch to another programworth using expensive replacement policies to lower miss rate(plus other tricks, like prefetching, …)

factor in why pages are as big as they are

106

swapping timeline

…

program A pages

…

program B pages

disk
program A

page fault

OS

start read

evicte
d (to free s

pace)
loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in page table

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

107

swapping timeline

…

program A pages

…

program B pages

disk
program A

page fault

OS

start read

evicte
d (to free s

pace)
loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in page table

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

107

swapping timeline

…

program A pages

…

program B pages

disk
program A

page fault

OS

start read

evicte
d (to free s

pace)
loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in page table

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

107

swapping timeline

…

program A pages

…

program B pages

disk
program A

page fault

OS

start read

evicte
d (to free s

pace)
loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in page table

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

107

swapping timeline

…

program A pages

…

program B pages

disk
program A

page fault

OS

start read

evicte
d (to free s

pace)
loaded

interrupt

OS needs to choose page to replace
hopefully copy on disk is already up-to-date?

first step of replacement:
mark evicted page invalid in page table

other processes can run while reading page
OS will get interrupt when disk is done

process A’s page table updated
and restarted from point of fault

107

Linux maps: list of maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 /bin/cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

OS tracks list of struct vm_area_struct with:
(shown in this output):

virtual address start, end
permissions
offset in backing file (if any)
pointer to backing file (if any)

(not shown):
info about sharing of non-file data …

108

Linux maps: list of maps
$ cat /proc/self/maps
00400000−0040b000 r−xp 00000000 08:01 48328831 / b in / cat
0060a000−0060b000 r−−p 0000a000 08:01 48328831 /bin/cat
0060b000−0060c000 rw−p 0000b000 08:01 48328831 /bin/cat
01974000−01995000 rw−p 00000000 00:00 0 [heap]
7f60c718b000−7f60c7490000 r−−p 00000000 08:01 77483660 /usr/lib/locale/locale−archive
7f60c7490000−7f60c764e000 r−xp 00000000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c764e000−7f60c784e000 −−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c784e000−7f60c7852000 r−−p 001be000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7852000−7f60c7854000 rw−p 001c2000 08:01 96659129 /lib/x86_64−linux−gnu/libc−2.19.so
7f60c7854000−7f60c7859000 rw−p 00000000 00:00 0
7f60c7859000−7f60c787c000 r−xp 00000000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a39000−7f60c7a3b000 rw−p 00000000 00:00 0
7f60c7a7a000−7f60c7a7b000 rw−p 00000000 00:00 0
7f60c7a7b000−7f60c7a7c000 r−−p 00022000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7c000−7f60c7a7d000 rw−p 00023000 08:01 96659109 /lib/x86_64−linux−gnu/ld−2.19.so
7f60c7a7d000−7f60c7a7e000 rw−p 00000000 00:00 0
7ffc5d2b2000−7ffc5d2d3000 rw−p 00000000 00:00 0 [stack]
7ffc5d3b0000−7ffc5d3b3000 r−−p 00000000 00:00 0 [vvar]
7ffc5d3b3000−7ffc5d3b5000 r−xp 00000000 00:00 0 [vdso]
ffffffffff600000−ffffffffff601000 r−xp 00000000 00:00 0 [vsyscall]

OS tracks list of struct vm_area_struct with:
(shown in this output):

virtual address start, end
permissions
offset in backing file (if any)
pointer to backing file (if any)

(not shown):
info about sharing of non-file data …

108

mmap
Linux/Unix has a function to “map” a file to memory
int file = open("somefile.dat", O_RDWR);

// data is region of memory that represents file
char *data = mmap(..., file, 0);

// read byte 6 from somefile.dat
char seventh_char = data[6];

// modifies byte 100 of somefile.dat
data[100] = 'x';

// can continue to use 'data' like an array

109

	permissions bits
	kernel-only
	switching address spaces
	read-only
	solution: permission bits

	page table tricks
	space on demand
	general page table tricks

	process creation and management
	fork
	aside: copy-on-write
	fork with copy-on-write
	fork example
	fork exercise
	exec
	aside: fork+exec, really?
	wait
	summary diagram

	backup slides
	assignment preview

	x86-64 PTE
	page table in memory — assignment
	simple paging with four pages
	wait statuses

	shells
	shells, the concept
	searching for programs
	kernel buffering
	layers of file interfaces
	pipe exercise
	pipe example
	pipe blocking
	waiting for more than one?
	POSIX and Unix
	getpid
	read, write
	aside: environment variables
	wait for mutliple
	wait for all
	wait for all (alt)
	waitpid WNOHANG
	parent and child
	exercise (read/write/dup2)

	partial reads and writes
	partial reads and read error checking
	partial writes and write error checking
	kernel buffering
	open
	Unix: everything is a file

	pipe exercise (partial reads)
	pipe: closing?
	mmap and swap
	swapping
	/proc/PID/maps
	mmap

