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last time
file descriptors — index to array of open file pointers

open() — add pointer in array
dup2(j, i) – open_files[i] = open_files[j]
close() — set pointer to NULL

convention: 0=stdin, 1=stdout, 1=stderr

redirection pattern

pipe()
special file to connect two processes
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anonymous feedback (1)
“Can you please shorten the length of your power point slides or
consolidate them before you upload them?”

I’ll think about how to do this (my slide source files are organized as a
all the slides for a topic together)
slide PDFs have a outline (usually visible by enabling a sidebar in your
PDF viewer)
(though sometimes I’m not careful about adjusting that — esp. for
‘backup’ slides)
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anonymous feedback (2)
“Could you discuss a capacity miss a bit more in depth? The
reading made sense for the cold miss and [conflict?] miss but I
couldn’t quite grasp the capacity miss. Thank you!”

we probably won’t this topic explicitly in lecture today
different reasons why values might not be in cache
can try to assign ‘reason’ for each miss
(but corner cases are tricky/depend on precise definition)
cold/compulsory — values not loaded yet
conflict — cache not flexible enough (more detail later)
capacity — cache not big enough (even if it was very flexible)
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reading note
pointed out nothing in reading on dup2, etc.

is covered a little in writeup for fork HW

also added something to threads reading
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2004 CPU

Registers
L1 cache
L2 cache
L3 cache

main
memory

< 1 ns

∼ 1 ns

∼ 5 ns

∼ 20 ns

∼ 100 ns

Image: approx 2004 AMD press image of Opteron die;
approx register location via chip-architect.org (Hans de Vries) 6
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the place of cache (1)

CPU Cache

RAM
or

another
cache

read 0xABCD?
read 0x1234?

0xABCD is 1000
0x1234 is 4000

read 0xABCD?

0xABCD is 1000
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memory hierarchy goals
performance of the fastest (smallest) memory

hide 100x latency difference? 99+% hit (= value found in cache) rate

capacity of the largest (slowest) memory
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memory hierarchy assumptions
temporal locality
“if a value is accessed now, it will be accessed again soon”

caches should keep recently accessed values

spatial locality
“if a value is accessed now, adjacent values will be accessed soon”

caches should store adjacent values at the same time

natural properties of programs — think about loops
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locality examples
double computeMean(int length, double *values) {

double total = 0.0;
for (int i = 0; i < length; ++i) {

total += values[i];
}
return total / length;

}

temporal locality: machine code of the loop

spatial locality: machine code of most consecutive instructions

temporal locality: total, i, length accessed repeatedly

spatial locality: values[i+1] accessed after values[i]
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split caches; multiple cores (one design)
instr.
cache
(core 1)

data
cache
(core 1)

instr.
cache
(core 1)

instr.
cache
(core 2)

data
cache
(core 2)

unified
L2 cache
(core 1)

unified
L2 cache
(core 2)

L3 cache
(shared between cores)

11



hierarchy and instruction/data caches
typically separate data and instruction caches for L1

(almost) never going to read instructions as data or vice-versa

avoids instructions evicting data and vice-versa

can optimize instruction cache for different access pattern

easier to build fast caches: that handles less accesses at a time
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one-block cache

valid tag value
0 0000 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? decision: divide memory into two-byte blocks
put exactly one of these blocks in the cache

is this even a value?

need extra bit to know

value from 00000, 00010, 00100, …, or …?

need tag to know

invalid, fetch
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building a (direct-mapped) cache

index valid tag value
00 0 00 00 00
01 0 01 00 00
10 0 00 00 00
11 0 00 00 00

Cache
addresses bytes
00000–00001 00 11
00010–00011 22 33
00100–00101 55 55
00110–00111 66 77
01000–01001 88 99
01010–01011 AA BB
01100–01101 CC DD
01110–01111 EE FF
10000–10001 F0 F1
… …

Memory

read byte at 01011? exactly one place for each address
spread out what can go in a block

is this even a value?

need extra bit to know

value from 01010 or 00010?

need tag to know

invalid, fetch

cache block: 2 bytes
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terminology
row = set

preview: change how much is in a row
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Tag-Index-Offset (TIO)

index valid tag value
00 1 000 00 11
01 1 001 AA BB
10 0 -- -- --
11 1 001 EE FF

2 byte blocks, 4 sets

index valid tag value
0 1 000 00 11 22 33
1 1 001 CC DD EE FF

4 byte blocks, 2 sets

index valid tag value
000 1 00 00 11
001 1 01 F1 F2
010 0 -- -- --
011 0 -- -- --
100 0 -- -- --
101 1 00 AA BB
110 0 -- -- --
111 1 00 EE FF

2 byte blocks, 8 sets

address 001111 (stores value 0xFF)
cache tag index offset
2 byte blocks, 4 sets
2 byte blocks, 8 sets
4 byte blocks, 2 sets

2 = 21 bytes in block
1 bit to say which byte4 = 22 bytes in block

2 bits to say which byte

22 = 4 sets
2 bits to index set23 = 8 sets

3 bits to index set
21 = 2 sets
1 bit to index set

tag — whatever is left over
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Tag-Index-Offset (TIO)

index valid tag value
00 1 000 00 11
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Tag-Index-Offset (TIO)

index valid tag value
00 1 000 00 11
01 1 001 AA BB
10 0 -- -- --
11 1 001 EE FF

2 byte blocks, 4 sets

index valid tag value
0 1 000 00 11 22 33
1 1 001 CC DD EE FF

4 byte blocks, 2 sets

index valid tag value
000 1 00 00 11
001 1 01 F1 F2
010 0 -- -- --
011 0 -- -- --
100 0 -- -- --
101 1 00 AA BB
110 0 -- -- --
111 1 00 EE FF

2 byte blocks, 8 sets

address 001111 (stores value 0xFF)
cache tag index offset
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2 = 21 bytes in block
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Tag-Index-Offset (TIO)

index valid tag value
00 1 000 00 11
01 1 001 AA BB
10 0 -- -- --
11 1 001 EE FF

2 byte blocks, 4 sets

index valid tag value
0 1 000 00 11 22 33
1 1 001 CC DD EE FF

4 byte blocks, 2 sets

index valid tag value
000 1 00 00 11
001 1 01 F1 F2
010 0 -- -- --
011 0 -- -- --
100 0 -- -- --
101 1 00 AA BB
110 0 -- -- --
111 1 00 EE FF

2 byte blocks, 8 sets

address 001111 (stores value 0xFF)
cache tag index offset
2 byte blocks, 4 sets 001 11 1
2 byte blocks, 8 sets 00 111 1
4 byte blocks, 2 sets 001 1 11

2 = 21 bytes in block
1 bit to say which byte4 = 22 bytes in block

2 bits to say which byte

22 = 4 sets
2 bits to index set23 = 8 sets

3 bits to index set
21 = 2 sets
1 bit to index set

tag — whatever is left over

16



cache size
cache size = amount of data in cache

not included metadata (tags, valid bits, etc.)
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Tag-Index-Offset formulas (direct-mapped)
(formulas derivable from prior slides)
S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

m memory addreses bits

t = m − (s + b) tag bits

C = B × S cache size (if direct-mapped)
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TIO: exercise
64-byte blocks, 128 set cache

stores 64 × 128 = 8192 bytes (of data)

if addresses 32-bits, then how many tag/index/offset bits?

which bytes are stored in the same block as byte from 0x1037?
A. byte from 0x1011
B. byte from 0x1021
C. byte from 0x1035
D. byte from 0x1041
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example access pattern (1)

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) miss
01100100 (64) miss

index valid tag value

00 0

01 0

10 0

11 0

2 byte blocks, 4 sets

B = 2 = 2b byte block size
b = 1 (block) offset bits
S = 4 = 2s sets
s = 2 (set) index bits

m = 8 bit addresses
t = m − (s + b) = 5 tag bits

tag index offset

miss caused by conflict
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exercise

address (hex) result
00000000 (00)
00000001 (01)
01100011 (63)
01100001 (61)
01100010 (62)
00000000 (00)
01100100 (64)

index valid tag value

00

01

10

11

4 byte blocks, 4 sets

how is the 8-bit address 61 (01100001) split
up into tag/index/offset?

b block offset bits;
B = 2b byte block size;
s set index bits; S = 2s sets ;
t = m − (s + b) tag bits (leftover)

exercise: which accesses are hits?
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cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
return value * scaleFactor;

}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?

4-byte read of scaleFactor
8-byte read of return address

22



cache accesses and C code (1)
int scaleFactor;

int scaleByFactor(int value) {
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}

scaleByFactor:
movl scaleFactor, %eax
imull %edi, %eax
ret

exericse: what data cache accesses does this function do?
4-byte read of scaleFactor
8-byte read of return address
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possible scaleFactor use
for (int i = 0; i < size; ++i) {

array[i] = scaleByFactor(array[i]);
}
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misses and code (2)
scaleByFactor:

movl scaleFactor, %eax
imull %edi, %eax
ret

suppose each time this is called in the loop:
return address located at address 0x7ffffffe43b8
scaleFactor located at address 0x6bc3a0

with direct-mapped 32KB cache w/64 B blocks, what is their:
return address scaleFactor

tag
index
offset
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tag 0xfffffffc 0xd7
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offset 0x38 0x20
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conflict miss coincidences?
obviously I set that up to have the same index

have to use exactly the right amount of stack space…

but one of the reasons we’ll want something better than
direct-mapped cache
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C and cache misses (warmup 1)
int array[4];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?
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some possiblities
… …array[0]array[1]array[2]array[3]

Q1: how do cache blocks correspond to array elements?
not enough information provided!

if array[0] starts at beginning of a cache block…
array split across two cache blocks

one cache block

memory access cache contents afterwards
— (empty)
read array[0] (miss) {array[0], array[1]}
read array[1] (hit) {array[0], array[1]}
read array[2] (miss) {array[2], array[3]}
read array[3] (hit) {array[2], array[3]}

if array[0] starts right in the middle of a cache block
array split across three cache blocks

one cache block
**** ++++

memory access cache contents afterwards
— (empty)
read array[0] (miss) {****, array[0]}
read array[1] (miss) {array[1], array[2]}
read array[2] (hit) {array[1], array[2]}
read array[3] (miss) {array[3], ++++}

if array[0] starts at an odd place in a cache block,
need to read two cache blocks to get most array elements

one cache block
**** ++++

memory access cache contents afterwards
— (empty)

read array[0] byte 0 (miss) { ****, array[0] byte 0 }

read array[0] byte 1-3 (miss) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[1] (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 0 (hit) { array[0] byte 1-3, array[2], array[3] byte 0 }

read array[2] byte 1-3 (miss) {part of array[2], array[3], ++++}

read array[3] (hit) {part of array[2], array[3], ++++}
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aside: alignment
compilers and malloc/new implementations usually try align values

align = make address be multiple of something

most important reason: don’t cross cache block boundaries

28



C and cache misses (warmup 2)
int array[4];
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
odd_sum += array[1];
odd_sum += array[3];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

Assume array[0] at beginning of cache block.

How many data cache misses on a 1-set direct-mapped cache with
8B blocks?
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C and cache misses (warmup 3)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
odd_sum += array[1];
even_sum += array[2];
odd_sum += array[3];
even_sum += array[4];
odd_sum += array[5];
even_sum += array[6];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny), and array[0] at beginning of cache block.

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?
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C and cache misses (warmup 4)
int array[8];
...
int even_sum = 0, odd_sum = 0;
even_sum += array[0];
even_sum += array[2];
even_sum += array[4];
even_sum += array[6];
odd_sum += array[1];
odd_sum += array[3];
odd_sum += array[5];
odd_sum += array[7];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2-set direct-mapped cache with
8B blocks?
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arrays and cache misses (1)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2) {

even_sum += array[i + 0];
odd_sum += array[i + 1];

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks?

35



arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks?
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arrays and cache misses (2b)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 4KB
direct-mapped cache with 16B cache blocks?
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arrays and cache misses (3)
int sum; int array[1024]; // 4KB array
for (int i = 8; i < 1016; i += 1) {

int local_sum = 0;
for (int j = i − 8; j < i + 8; j += 1) {

local_sum += array[i] * (j − i);
}
sum += (local_sum − array[i]);

}

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks?
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simulated misses: BST lookups
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(simulated 16KB direct-mapped data cache; excluding BST setup)
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actual misses: BST lookups

0 20000 40000 60000 80000
data size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

da
ta

 c
ac

he
 m

iss
es

 p
er

 in
st

ru
ct

io
n

data cache misses for random binary search tree lookups
my desktop

(actual 32KB more complex data cache)
(only one set of measurements + other things on machine + excluding initial load)
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simulated misses: matrix multiplies
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actual misses: matrix multiplies
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misses with skipping
int array1[512]; int array2[512];
...
for (int i = 0; i < 512; i += 1)

sum += array1[i] * array2[i];
}

Assume everything but array1, array2 is kept in registers (and the compiler
does not do anything funny).

About how many data cache misses on a 2KB direct-mapped
cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2

How about on a two-way set associative cache?
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best/worst case
array1[i] and array2[i] always different sets:

= distance from array1 to array2 not multiple of # sets × bytes/set
2 misses every 4 i
blocks of 4 array1[X] values loaded, then used 4 times before loading
next block
(and same for array2[X])

array1[i] and array2[i] same sets:
= distance from array1 to array2 is multiple of # sets × bytes/set
2 misses every i
block of 4 array1[X] values loaded, one value used from it,
then, block of 4 array2[X] values replaces it, one value used from it, …
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worst case in practice?
two rows of matrix?

often sizeof(row) bytes apart

if the row size is multiple of number of sets × bytes per block,
oops!
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adding associativity

index valid tag value valid tag value

0 0 0

1 0 0

2-way set associative, 2 byte blocks, 2 sets

multiple places to put values with same index
avoid misses from two active values using same set
(“conflict misses”))

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits
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avoid misses from two active values using same set
(“conflict misses”))

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss
tag indexoffset

needs to replace block in set 0!

set 0

set 1
way 0 way 1

m = 8 bit addresses
S = 2 = 2s sets
s = 1 (set) index bits

B = 2 = 2b byte block size
b = 1 (block) offset bits
t = m − (s + b) = 6 tag bits
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cache operation (associative)

valid tag data valid tag data
1 10 00 11 1 00 AA BB

1 11 B4 B5 1 01 33 44

10011 1

index

=

=

tag

AND

AND

OR is hit? (1)

offset

data
(B5)
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associative lookup possibilities
none of the blocks for the index are valid

none of the valid blocks for the index match the tag
something else is stored there

one of the blocks for the index is valid and matches the tag
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replacement policies

index valid tag value valid tag value LRU

0 1 000000
mem[0x00]
mem[0x01] 1 011000

mem[0x60]
mem[0x61] 1

1 1 011000
mem[0x62]
mem[0x63] 0 1

2-way set associative, 2 byte blocks, 2 sets

address (hex) result
00000000 (00) miss
00000001 (01) hit
01100011 (63) miss
01100001 (61) miss
01100010 (62) hit
00000000 (00) hit
01100100 (64) miss

how to decide where to insert 0x64?

track which block was read least recently
updated on every access
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example replacement policies
least recently used

take advantage of temporal locality
at least dlog2(E!)e bits per set for E-way cache

(need to store order of all blocks)

approximations of least recently used
implementing least recently used is expensive
really just need “avoid recently used” — much faster/simpler
good approximations: E to 2E bits

first-in, first-out
counter per set — where to replace next

(pseudo-)random
no extra information!
actually works pretty well in practice

50



associativity terminology
direct-mapped — one block per set

E-way set associative — E blocks per set
E ways in the cache

fully associative — one set total (everything in one set)
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Tag-Index-Offset formulas
m memory addreses bits

E number of blocks per set (“ways”)

S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

t = m − (s + b) tag bits

C = B × S × E cache size (excluding metadata)
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Tag-Index-Offset exercise
m memory addreses bits (Y86-64: 64)
E number of blocks per set (“ways”)
S = 2s number of sets
s (set) index bits
B = 2b block size
b (block) offset bits
t = m − (s + b) tag bits
C = B × S × E cache size (excluding metadata)
My desktop:

L1 Data Cache: 32 KB, 8 blocks/set, 64 byte blocks
L2 Cache: 256 KB, 4 blocks/set, 64 byte blocks
L3 Cache: 8 MB, 16 blocks/set, 64 byte blocks
Divide the address 0x34567 into tag, index, offset for each cache.
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T-I-O exercise: L1
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T-I-O results
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T-I-O: splitting
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misses with skipping
int array1[512]; int array2[512];
...
for (int i = 0; i < 512; i += 1)

sum += array1[i] * array2[i];
}

Assume everything but array1, array2 is kept in registers (and the compiler
does not do anything funny).

About how many data cache misses on a 2KB direct-mapped
cache with 16B cache blocks?
Hint: depends on relative placement of array1, array2

How about on a two-way set associative cache?
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arrays and cache misses (2)
int array[1024]; // 4KB array
int even_sum = 0, odd_sum = 0;
for (int i = 0; i < 1024; i += 2)

even_sum += array[i + 0];
for (int i = 0; i < 1024; i += 2)

odd_sum += array[i + 1];

Assume everything but array is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on initially empty 2KB
direct-mapped cache with 16B cache blocks? Would a
set-associtiave cache be better?
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simulated misses: BST lookups
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simulated misses: matrix multiplies
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handling writes
what about writing to the cache?

two decision points:

if the value is not in cache, do we add it?
if yes: need to load rest of block
if no: missing out on locality?

if value is in cache, when do we update next level?
if immediately: extra writing
if later: need to remember to do so
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allocate on write?
processor writes less than whole cache block

block not yet in cache

two options:

write-allocate
fetch rest of cache block, replace written part
(then follow write-through or write-back policy)

write-no-allocate
don’t use cache at all (send write to memory instead)
guess: not read soon?
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write-through v. write-back

CPU Cache

option 1: write-through

RAM
ABCD: FF …

11CD: 42
ABCD: FF

…

write 10
to 0xABCD
1

write 10
to 0xABCD
2

read
from

0x11CD
(conflicts)

2

write 10
to ABCD

3

… when replaced — send value to memory

read
from

0x11CD

4

… read new value to store in cache
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write-through v. write-back
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write-through v. write-back

CPU Cache RAM
ABCD: 10
(dirty)

…
11CD: 42
ABCD: 10

…

write 10
to 0xABCD
1

write 10
to 0xABCD
2

read
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0x11CD
(conflicts)

2

write 10
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3
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0x11CD

4

… read new value to store in cache
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writeback policy

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, 4 byte blocks, 2 sets

changed value!

1 = dirty (different than memory)
needs to be written if evicted
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write-allocate + write-back

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
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write-allocate + write-back

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
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write-allocate + write-back

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
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write-allocate + write-back

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 000001

0xFF
mem[0x05] 1 0

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block – to get mem[0x05]
step 3b: update LRU information
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write-no-allocate + write-back

index valid tag value dirty valid tag value dirty LRU

0 1 000000
mem[0x00]
mem[0x01] 0 1 011000

mem[0x60]*
mem[0x61]* 1 1

1 1 011000
mem[0x62]
mem[0x63] 0 0 0

2-way set associative, LRU, writeback

writing �0xFF into address 0x04?
step 1: is it in cache yet?
step 2: no, just send it to memory
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exercise (1)

index valid tag value dirty valid tag value dirty LRU

0 1 001100
mem[0x30]
mem[0x31] 0 1 010000

mem[0x40]*
mem[0x41]* 1 0

1 1 011000
mem[0x62]
mem[0x63] 0 1 001100

mem[0x32]*
mem[0x33]* 1 1

2-way set associative, LRU, write-allocate, writeback

for each of the following accesses, performed alone, would it
require (a) reading a value from memory (or next level of cache)
and (b) writing a value to the memory (or next level of cache)?

writing 1 byte to 0x33
reading 1 byte from 0x52
reading 1 byte from 0x50
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exercise (2)

index valid tag value valid tag value LRU

0 1 001100
mem[0x30]
mem[0x31] 1 010000

mem[0x40]
mem[0x41] 0

1 1 011000
mem[0x62]
mem[0x63] 1 001100

mem[0x32]
mem[0x33] 1

2-way set associative, LRU, write-no-allocate, write-through

for each of the following accesses, performed alone, would it
require (a) reading a value from memory and (b) writing a value to
the memory?

writing 1 byte to 0x33
reading 1 byte from 0x52
reading 1 byte from 0x50
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fast writes

CPU Cache RAM

write 10
to 0xABCD

write 20
to 0x1234

0xABCD: 10
0x1234: 20

write buffer

write appears to complete immediately when placed in buffer
memory can be much slower
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cache miss types
common to categorize misses:

roughly “cause” of miss assuming cache block size fixed

compulsory (or cold) — first time accessing something
adding more sets or blocks/set wouldn’t change

conflict — sets aren’t big/flexible enough
a fully-associtive (1-set) cache of the same size would have done better

capacity — cache was not big enough

coherence — from sync’ing cache with other caches
only issue with multiple cores
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making any cache look bad
1. access enough blocks, to fill the cache

2. access an additional block, replacing something

3. access last block replaced

4. access last block replaced

5. access last block replaced

…

but — typical real programs have locality
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cache optimizations
(assuming typical locality + keeping cache size constant if possible…)

miss rate hit time miss penalty
increase cache size better worse —
increase associativity better worse worse?
increase block size depends worse worse
add secondary cache — — better
write-allocate better — ?
writeback — — ?
LRU replacement better ? worse?
prefetching better — —
prefetching = guess what program will use, access in advance

average time = hit time + miss rate × miss penalty
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cache optimizations by miss type
(assuming other listed parameters remain constant)

capacity conflict compulsory
increase cache size fewer misses fewer misses —
increase associativity — fewer misses —
increase block size more misses? more misses? fewer misses

LRU replacement — fewer misses —
prefetching — — fewer misses
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another view
VPN part 1 VPN part 2 page offset

first-level
page table

page table base register

page table entry
second-level
page table

page table entry

physical page
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two-level page table lookup

MMU

11 0101 01 00 1011 00 00 1101 1111

VPN — split into two parts (one per level)

this example: parts equal sized — common, but not required

×
PTE
size

0x10000

page table
base register

+

memory (really cache)

1101 0011 111st PTE
addr.

valid, etc?

split
PTE parts

cause fault?

×
page
size

+

phys
page #

phys
addr

2nd PTE
addr.

×
PTE
size

split
PTE parts

valid, etc?

cause fault?

00 1101 1111
physical address

virtual address

first-level page table lookup second-level page table lookupfirst-level second-level

have physical page number
need address of first byte of page
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cache accesses and multi-level PTs
four-level page tables — five cache accesses per program memory
access

L1 cache hits — typically a couple cycles each?

so add 8 cycles to each program memory access?

not acceptable
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program memory active sets
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

small areas of memory active at a time
one or two pages in each area?
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page table entries and locality
page table entries have excellent temporal locality

typically one or two pages of the stack active

typically one or two pages of code active

typically one or two pages of heap/globals active

each page contains whole functions, arrays, stack frames, etc.

needed page table entries are very small
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page table entries and locality
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needed page table entries are very small
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page table entry cache
caled a TLB (translation lookaside buffer)

very small cache of page table entries

L1 cache TLB
physical addresses virtual page numbers
bytes from memory page table entries
tens of bytes per block one page table entry per block
usually thousands of blocks usually tens of entries

only caches the page table lookup itself
(generally) just entries from the last-level page tablesnot much spatial locality between page table entries

(they’re used for kilobytes of data already)
(and if spatial locality, maybe use larger page size?)

few active page table entries at a time
enables highly associative cache designs
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TLB and multi-level page tables
TLB caches valid last-level page table entries

doesn’t matter which last-level page table

means TLB output can be used directly to form address
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TLB and two-level lookup

11 0101 01 00 1011 00 00 1101 1111

×
PTE
size

0x10000

page table
base register

+

TLB hit

TLB miss

data or instruction cache

1101 0011 111st PTE
addr.

valid, etc?

split
PTE
parts

cause fault?

×
page
size

+

phys
page #

phys
addr

2nd PTE
addr.

×
PTE
size

split
PTE
parts

valid, etc?

cause fault?

TLB

00 1101 1111
physical address

virtual address
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TLB organization (2-way set associative)

valid tag physical
page #

write … valid tag physical
page #

write …

… … … … … … … … … …
1 10 0x123 1 1 11 0x12F 1

10011 010110

index

(program address)
VPN page offset

=

=

tag

AND

AND

page table entry

OR

is hit?

page
table
entry
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TLB organization (2-way set associative)
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page #
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=

=
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TLB organization (2-way set associative)

valid tag physical
page #

write … valid tag physical
page #

write …

… … … … … … … … … …
1 10 0x123 1 1 11 0x12F 1

10011 010110

index

(program address)
VPN page offset

=

=

tag

AND

AND

page table entry

OR

is hit?

page
table
entry

85



TLB organization (2-way set associative)

valid tag physical
page #

write … valid tag physical
page #

write …

… … … … … … … … … …
1 10 0x123 1 1 11 0x12F 1

10011 010110

index

(program address)
VPN page offset

=

=

tag

AND

AND

page table entry

OR

is hit?

page
table
entry

85



TLB organization (2-way set associative)

valid tag physical
page #
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… … … … … … … … … …
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address splitting for TLBs (1)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

64-entry, 4-way L1 data TLB

TLB index bits?

TLB tag bits?
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address splitting for TLBs (2)
my desktop:

4KB (212 byte) pages; 48-bit virtual address

1536-entry (3 · 29), 12-way L2 TLB

TLB index bits?

TLB tag bits?
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exercise: TLB access pattern (setup)
4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

how many index bits?

TLB index of virtual address 0x12345?
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exercise: TLB access pattern
4-entry, 2-way TLB, LRU replacement policy, initially empty

4096 byte pages

type virtual physical result set 0 set 1
read 0x440030 0x554030miss 0x440
write 0x440034 0x554034hit 0x440
read 0x7FFFE008 0x556008miss 0x440
read 0x7FFFE000 0x556000hit 0x440, 0x7FFFE
read 0x7FFFDFF8 0x5F8FF8miss 0x440, 0x7FFFE 0x7FFFD
read 0x664080 0x5F9080miss 0x664, 0x7FFFE 0x7FFFD
read 0x440038 0x554038miss 0x664, 0x440 0x7FFFD
write 0x7FFFDFF0 0x5F8FF0hit 0x664, 0x440 0x7FFFD

VPNs of PTEs held in TLBset
idx V tag physical page write?user? … LRU?

1 0x00220 (0x440 � 1) 0x554 1 1 … no
1 0x00332 (0x00664 � 1) 0x5F9 1 1 … yes

1 0x3FFFF (0x7FFFD � 1) 0x5F8 1 1 … no
0 --- --- - - … yes

0

1

which are TLB hits? which are TLB misses? final contents of TLB?
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changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit
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editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it
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backup slides
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inclusive versus exclusive
L2 inclusive of L1

everything in L1 cache duplicated in L2
adding to L1 also adds to L2

L1 cache

L2 cache

L2 exclusive of L1
L2 contains different data than L1
adding to L1 must remove from L2
probably evicting from L1 adds to L2

L1 cache

L2 cache

inclusive policy:
no extra work on eviction
but duplicated data

easier to explain when
Lk shared by multiple L(k − 1) caches?

exclusive policy:
avoid duplicated data
sometimes called victim cache
(contains cache eviction victims)

makes less sense with multicore
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Tag-Index-Offset formulas (direct-mapped)
(formulas derivable from prior slides)
S = 2s number of sets

s (set) index bits

B = 2b block size

b (block) offset bits

m memory addreses bits

t = m − (s + b) tag bits

C = B × S cache size (if direct-mapped)
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backup slides — cache performance
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average memory access time
AMAT = hit time + miss penalty × miss rate

or AMAT = hit time × hit rate + miss time × miss rate

effective speed of memory
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AMAT exercise (1)
90% cache hit rate
hit time is 2 cycles
30 cycle miss penalty
what is the average memory access time?

suppose we could increase hit rate by increasing its size, but it
would increase the hit time to 3 cycles
how much do we have to increase the hit rate for this to not
increase AMAT?
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exercise: AMAT and multi-level caches
suppose we have L1 cache with

3 cycle hit time
90% hit rate

and an L2 cache with
10 cycle hit time
80% hit rate (for accesses that make this far)
(assume all accesses come via this L1)

and main memory has a 100 cycle access time
assume when there’s an cache miss, the next level access starts
after the hit time

e.g. an access that misses in L1 and hits in L2 will take 10+3 cycles

what is the average memory access time for the L1 cache?
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approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:

good or bad temporal/spatial locality
good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

99



approximate miss analysis
very tedious to precisely count cache misses

even more tedious when we take advanced cache optimizations into
account

instead, approximations:

good or bad temporal/spatial locality
good temporal locality: value stays in cache
good spatial locality: use all parts of cache block

with nested loops: what does inner loop use?
intuition: values used in inner loop loaded into cache once
(that is, once each time the inner loop is run)
…if they can all fit in the cache

99



locality exercise (1)
/* version 1 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 2 */
for (int j = 0; j < N; ++j)

for (int i = 0; i < N; ++i)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?
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exercise: miss estimating (1)
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

Assume: 4 array elements per block, N very large, nothing in cache
at beginning.

Example: N/4 estimated misses for A accesses:
A[i] should always be hit on all but first iteration of inner-most loop.
first iter: A[i] should be hit about 3/4s of the time (same block as A[i-1]
that often)

Exericse: estimate # of misses for B, C
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a note on matrix storage
A — N × N matrix

represent as array

makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);

A_flat[i * N + j] === A_2d_array[i][j]
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convertion re: rows/columns
going to call the first index rows

Ai,j is A row i, column j

rows are stored together

this is an arbitrary choice
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5x5 array and 4-element cache blocks
array[0*5 + 0] array[0*5 + 1] array[0*5 + 2] array[0*5 + 3] array[0*5 + 4]
array[1*5 + 0] array[1*5 + 1] array[1*5 + 2] array[1*5 + 3] array[1*5 + 4]
array[2*5 + 0] array[2*5 + 1] array[2*5 + 2] array[2*5 + 3] array[2*5 + 4]
array[3*5 + 0] array[3*5 + 1] array[3*5 + 2] array[3*5 + 3] array[3*5 + 4]
array[4*5 + 0] array[4*5 + 1] array[4*5 + 2] array[4*5 + 3] array[4*5 + 4]

if array starts on cache block
first cache block = first elements
all together in one row!

second cache block:
1 from row 0
3 from row 1

generally: cache blocks contain data from 1 or 2 rows
→ better performance from reusing rows
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i * N + j] += A[i * N + k] * B[k * N + j];
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j];
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loop orders and locality
loop body: Cij+ = AikBkj

kij order: Cij, Bkj have spatial locality

kij order: Aik has temporal locality

… better than …

ijk order: Aik has spatial locality

ijk order: Cij has temporal locality
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j];
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which is better?

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i * N + k] * B[k * N + j];

exercise: Which version has better spatial/temporal locality for…
…accesses to C? …accesses to A? …accesses to B?
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array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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probably not still in cache next time
(but, at least some spatial locality)
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array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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matrix multiply

Cij =
n∑

k=1
Aik × Bkj

/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)
C[i*N+j] += A[i * N + k] * B[k * N + j];

/* version 2: outer loop is k, middle is i */
for (int k = 0; k < N; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
C[i*N+j] += A[i * N + k] * B[k * N + j];
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performance (with A=B)
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alternate view 1: cycles/instruction
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alternate view 2: cycles/operation
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counting misses: version 1
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int k = 0; k < N; ++k)

C[i * N + j] += A[i * N + k] * B[k * N + j];

if N really large
assumption: can’t get close to storing N values in cache at once

for A: about N ÷ block size misses per k-loop
total misses: N3 ÷ block size

for B: about N misses per k-loop
total misses: N3

for C: about 1 ÷ block size miss per k-loop
total misses: N2 ÷ block size
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counting misses: version 2
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i * N + j] += A[i * N + k] * B[k * N + j];

for A: about 1 misses per j-loop
total misses: N2

for B: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size

for C: about N ÷ block size miss per j-loop
total misses: N3 ÷ block size
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exercise: miss estimating (2)
for (int k = 0; k < 1000; k += 1)

for (int i = 0; i < 1000; i += 1)
for (int j = 0; j < 1000; j += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block

assuming: cache not close to big enough to hold 1K elements

estimate: approximately how many misses for A, B?
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L1 misses (with A=B)
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L1 miss detail (1)
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L1 miss detail (2)
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addresses
B[k*114+j] is at 10 0000 0000 0100
B[k*114+j+1] is at 10 0000 0000 1000
B[(k+1)*114+j] is at 10 0011 1001 0100
B[(k+2)*114+j] is at 10 0101 0101 1100
…
B[(k+9)*114+j] is at 11 0000 0000 1100

test system L1 cache: 6 index bits, 6 block offset bits
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conflict misses
powers of two — lower order bits unchanged

B[k*93+j] and B[(k+11)*93+j]:
1023 elements apart (4092 bytes; 63.9 cache blocks)

64 sets in L1 cache: usually maps to same set

B[k*93+(j+1)] will not be cached (next i loop)

even if in same block as B[k*93+j]

how to fix? improve spatial locality
(maybe even if it requires copying)
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locality exercise (2)
/* version 2 */
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
A[i] += B[j] * C[i * N + j]

/* version 3 */
for (int ii = 0; ii < N; ii += 32)

for (int jj = 0; jj < N; jj += 32)
for (int i = ii; i < ii + 32; ++i)

for (int j = jj; j < jj + 32; ++j)
A[i] += B[j] * C[i * N + j];

exercise: which has better temporal locality in A? in B? in C?
how about spatial locality?
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a transformation
for (int k = 0; k < N; k += 1)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

C[i*N+j] += A[i*N+k] * B[k*N+j];

split the loop over k — should be exactly the same
(assuming even N)
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simple blocking
for (int kk = 0; kk < N; kk += 2)

/* was here: for (int k = kk; k < kk + 2; ++k) */
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)

/* load Aik, Aik+1 into cache and process: */
for (int k = kk; k < kk + 2; ++k)

C[i*N+j] += A[i*N+k] * B[k*N+j];

now reorder split loop — same calculations

now handle Bij for k + 1 right after Bij for k

(previously: Bi,j+1 for k right after Bij for k)
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simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}
}

}
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simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {
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Temporal locality in Cijs
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simple blocking – expanded
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More spatial locality in Aik
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simple blocking – expanded
for (int kk = 0; kk < N; kk += 2) {

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
/* process a "block" of 2 k values: */
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}

Still have good spatial locality in Bkj, Cij
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counting misses for A (1)
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for A:
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…
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counting misses for A (2)
A[0*N+0], A[0*N+1], A[0*N+0], A[0*N+1] …(repeats N times)
A[1*N+0], A[1*N+1], A[1*N+0], A[1*N+1] …(repeats N times)
…

…

likely cache misses: only first iterations of j loop

how many cache misses per iteration? usually one
A[0*N+0] and A[0*N+1] usually in same cache block

about N

2
· N misses total
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counting misses for B (1)
for (int kk = 0; kk < N; kk += 2)

for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {
C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…
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counting misses for B (2)
access pattern for B:
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
B[2*N+0], B[3*N+0], …B[2*N+(N-1)], B[3*N+(N-1)]
B[4*N+0], B[5*N+0], …B[4*N+(N-1)], B[5*N+(N-1)]
…
B[0*N+0], B[1*N+0], …B[0*N+(N-1)], B[1*N+(N-1)]
…

likely cache misses: any access, each time

how many cache misses per iteration? equal to # cache blocks in 2
rows

about N

2
· N · 2N

block size = N3 ÷ block size misses
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simple blocking – counting misses
for (int kk = 0; kk < N; kk += 2)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];

}

N

2
· N j-loop executions and (assuming N large):

about 1 misses from A per j-loop
N2/2 total misses (before blocking: N2)

about 2N ÷ block size misses from B per j-loop
N3 ÷ block size total misses (same as before blocking)

about N ÷ block size misses from C per j-loop
N3 ÷ (2 · block size) total misses (before: N3 ÷ block size)
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improvement in read misses
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simple blocking (2)
same thing for i in addition to k?
for (int kk = 0; kk < N; kk += 2) {

for (int ii = 0; ii < N; ii += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
for (int k = kk; k < kk + 2; ++k)

for (int i = 0; i < ii + 2; ++i)
C[i*N+j] += A[i*N+k] * B[k*N+j];

}
}

}
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simple blocking — locality
for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
/* load a block around Aik */
for (int j = 0; j < N; ++j) {

/* process a "block": */
Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

}
}

now: more temporal locality in B
previously: access Bkj, then don’t use it again for a long time
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simple blocking — counting misses for A
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 misses per loop with A (2 cache blocks)

total misses: N2

2 (same as only blocking in K)
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simple blocking — counting misses for B
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2 ÷ block size misses per iteration with B

total misses: N3

2 · block size (before: N3

block size)
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simple blocking — counting misses for C
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

N

2
· N

2
iterations of j loop

likely 2
block size misses per iteration with C

total misses: N3

2 · block size (same as blocking only in K)
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simple blocking — counting misses (total)
for (int k = 0; k < N; k += 2)

for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j) {

Ci+0,j += Ai+0,k+0 * Bk+0,j

Ci+0,j += Ai+0,k+1 * Bk+1,j

Ci+1,j += Ai+1,k+0 * Bk+0,j

Ci+1,j += Ai+1,k+1 * Bk+1,j
}

before:
A: N2

2
; B: N3

1 · block size; C
N3

1 · block size
after:
A: N2

2
; B: N3

2 · block size; C
N3

2 · block size
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generalizing: divide and conquer
partial_matrixmultiply(float *A, float *B, float *C

int startI, int endI, ...) {
for (int i = startI; i < endI; ++i) {

for (int j = startJ; j < endJ; ++j) {
for (int k = startK; k < endK; ++k) {

...
}
matrix_multiply(float *A, float *B, float *C, int N) {

for (int ii = 0; ii < N; ii += BLOCK_I)
for (int jj = 0; jj < N; jj += BLOCK_J)
for (int kk = 0; kk < N; kk += BLOCK_K)

...
/* do everything for segment of A, B, C

that fits in cache! */
partial_matmul(A, B, C,

ii, ii + BLOCK_I, jj, jj + BLOCK_J,
kk, kk + BLOCK_K)

}
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array usage: matrix block

Aik block
(I × K)

Bkj block
(K × J)

Cij block
(I × J)

inner loops work on “matrix block” of A, B, C
rather than rows of some, little blocks of others
blocks fit into cache (b/c we choose I, K, J)
where previous rows might not

now (versus loop ordering example)
some spatial locality in A, B, and C
some temporal locality in A, B, and C

Cij calculation uses strips from A, B
K calculations for one cache miss
good temporal locality!

Aik used with entire strip of B J calculations for one cache miss
good temporal locality!

(approx.) KIJ fully cached calculations
for KI + IJ + KJ values need to be lodaed per “matrix block”
(assuming everything stays in cache)

Cij += Aik · Bkj
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cache blocking efficiency
for each of N3/IJK matrix blocks:
load I × K elements of Aik:

≈ IK ÷ block size misses per matrix block
≈ N3/(J · blocksize) misses total

load K × J elements of Bkj:
≈ N3/(I · blocksize) misses total

load I × J elements of Cij:
≈ N3/(K · blocksize) misses total

bigger blocks — more work per load!
catch: IK + KJ + IJ elements must fit in cache

otherwise estimates above don’t work
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cache blocking rule of thumb
fill the most of the cache with useful data

and do as much work as possible from that

example: my desktop 32KB L1 cache

I = J = K = 48 uses 482 × 3 elements, or 27KB.

assumption: conflict misses aren’t important
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systematic approach
for (int k = 0; k < N; ++k) {

for (int i = 0; i < N; ++i) {
Aik loaded once in this loop:
for (int j = 0; j < N; ++j)

Cij, Bkj loaded each iteration (if N big):
B[i*N+j] += A[i*N+k] * A[k*N+j];

values from Aik used N times per load

values from Bkj used 1 times per load
but good spatial locality, so cache block of Bkj together

values from Cij used 1 times per load
but good spatial locality, so cache block of Cij together
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exercise: miss estimating (3)
for (int kk = 0; kk < 1000; kk += 10)

for (int jj = 0; jj < 1000; jj += 10)
for (int i = 0; i < 1000; i += 1)

for (int j = jj; j < jj+10; j += 1)
for (int k = kk; k < kk + 10; k += 1)

A[k*N+j] += B[i*N+j];

assuming: 4 elements per block
assuming: cache not close to big enough to hold 1K elements, but
big enough to hold 500 or so

estimate: approximately how many misses for A, B?

hint 1: part of A, B loaded in two inner-most loops only needs to
be loaded once
hint 2: part of A can be reused between iterations of i loop
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loop ordering compromises
loop ordering forces compromises:

for k: for i: for j: c[i,j] += a[i,k] * b[j,k]

perfect temporal locality in a[i,k]

bad temporal locality for c[i,j], b[j,k]

perfect spatial locality in c[i,j]

bad spatial locality in b[j,k], a[i,k]

cache blocking: work on blocks rather than rows/columns
have some temporal, spatial locality in everything
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cache blocking pattern
no perfect loop order? work on rectangular matrix blocks

size amount used in inner loops based on cache size

in practice:
test performance to determine ‘size’ of blocks
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backup slides
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cache organization and miss rate
depends on program; one example:

SPEC CPU2000 benchmarks, 64B block size

LRU replacement policies

data cache miss rates:
Cache size direct-mapped 2-way 8-way fully assoc.
1KB 8.63% 6.97% 5.63% 5.34%
2KB 5.71% 4.23% 3.30% 3.05%
4KB 3.70% 2.60% 2.03% 1.90%
16KB 1.59% 0.86% 0.56% 0.50%
64KB 0.66% 0.37% 0.10% 0.001%
128KB 0.27% 0.001% 0.0006% 0.0006%

Data: Cantin and Hill, “Cache Performance for SPEC CPU2000 Benchmarks”
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/ 150

http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/
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exercise (1)
initial cache: 64-byte blocks, 64 sets, 8 ways/set

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte blocks, 64 sets, 8 ways/set)
B. quadrupling the number of sets
C. quadrupling the number of ways/set
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exercise (2)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of capacity misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size
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exercise (3)
initial cache: 64-byte blocks, 8 ways/set, 64KB cache

If we leave the other parameters listed above unchanged, which will
probably reduce the number of conflict misses in a typical
program? (Multiple may be correct.)
A. quadrupling the block size (256-byte block, 8 ways/set, 64KB cache)
B. quadrupling the number of ways/set
C. quadrupling the cache size
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prefetching
seems like we can’t really improve cold misses…

have to have a miss to bring value into the cache?

solution: don’t require miss: ‘prefetch’ the value before it’s
accessed

remaining problem: how do we know what to fetch?
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common access patterns
suppose recently accessed 16B cache blocks are at:

0x48010, 0x48020, 0x48030, 0x48040

guess what’s accessed next

common pattern with instruction fetches and array accesses
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prefetching idea
look for sequential accesses

bring in guess at next-to-be-accessed value

if right: no cache miss (even if never accessed before)

if wrong: possibly evicted something else — could cause more
misses

fortunately, sequential access guesses almost always right
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mapping of sets to memory (direct-mapped)
DM cache

set 0

set K

memory

values which would be stored in same set
(cache size) bytes apart

array[0] here

array[X] where
X = K ·(array elements per cache block)

array[0] here

array[X]
X = (cache size / array element size)

elements (cache size) bytes apart in array
beware conflict misses!
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mapping of sets to memory (3-way)
3-way set assoc. cache

set 0
memory

array[0]

array[X]
where X = way size

array element size

accesses (way size) bytes apart in array?
beware conflict misses!
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C and cache misses (4)
typedef struct {

int a_value, b_value;
int other_values[6];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).
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C and cache misses (4, rewrite)
int array[40]
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 40; i += 8)

a_sum += array[i];
for (int i = 1; i < 40; i += 8)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array starts at beginning of cache block.

How many data cache misses on a 2-way set associative 128B
cache with 16B cache blocks and LRU replacement?
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C and cache misses (4, solution pt 1)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing 0, 8, 16, 24, 32, 1, 9, 17, 25, 33

0 (set 0), 8 (set 2), 16 (set 0), 24 (set 2), 32 (set 0)

1 (set 0), 9 (set 2), 17 (set 0), 25 (set 2), 33 (set 0)
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C and cache misses (4, solution pt 2)
access set 0 after (LRU first) result
— —, —
array[0] —, array[0 to 3] miss
array[16] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss
array[1] array[32 to 35], array[0 to 3] miss
array[17] array[0 to 3], array[16 to 19] miss
array[32] array[16 to 19], array[32 to 35] miss

6 misses for set 0
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C and cache misses (4, solution pt 3)
access set 2 after (LRU first) result
— —, —
array[8] —, array[8 to 11] miss
array[24] array[8 to 11], array[24 to 27] miss
array[9] array[8 to 11], array[24 to 27] hit
array[25] array[16 to 19], array[32 to 35] hit

2 misses for set 1
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C and cache misses (3)
typedef struct {

int a_value, b_value;
int other_values[10];

} item;
item items[5];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 5; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 5; ++i)

b_sum += items[i].b_value;

observation: 12 ints in struct: only first two used

equivalent to accessing array[0], array[12], array[24], etc.

…then accessing array[1], array[13], array[25], etc.
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C and cache misses (3, rewritten?)
int array[60];
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 60; i += 12)

a_sum += array[i];
for (int i = 1; i < 60; i += 12)

b_sum += array[i];

Assume everything but array is kept in registers (and the compiler does not do
anything funny) and array at beginning of cache block.

How many data cache misses on a 128B two-way set associative
cache with 16B cache blocks and LRU replacement?
observation 1: first loop has 5 misses — first accesses to blocks
observation 2: array[0] and array[1], array[12] and array[13], etc. in
same cache block
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C and cache misses (3, solution)
ints 4 byte → array[0 to 3] and array[16 to 19] in same cache set

64B = 16 ints stored per way
4 sets total

accessing array indices 0, 12, 24, 36, 48, 1, 13, 25, 37, 49

0 (set 0, array[0 to 3]), 12 (set 3), 24 (set 2), 36 (set 1), 48 (set 0)
each set used at most twice
no replacement needed

so access to 1, 21, 41, 61, 81 all hits:
set 0 contains block with array[0 to 3]
set 5 contains block with array[20 to 23]
etc.
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C and cache misses (3)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 2KB direct-mapped cache with
16B cache blocks?
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C and cache misses (3, rewritten?)
item array[1024]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 1024; i += 128)

a_sum += array[i];
for (int i = 1; i < 1024; i += 128)

b_sum += array[i];
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C and cache misses (4)
typedef struct {

int a_value, b_value;
int boring_values[126];

} item;
item items[8]; // 4 KB array
int a_sum = 0, b_sum = 0;
for (int i = 0; i < 8; ++i)

a_sum += items[i].a_value;
for (int i = 0; i < 8; ++i)

b_sum += items[i].b_value;

Assume everything but items is kept in registers (and the compiler does not do
anything funny).

How many data cache misses on a 4-way set associative 2KB
direct-mapped cache with 16B cache blocks?
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thinking about cache storage (1)
2KB direct-mapped cache with 16B blocks —

set 0: address 0 to 15, (0 to 15) + 2KB, (0 to 15) + 4KB, …

block at 0: array[0] through array[3]
block at 0+2KB: array[512] through array[515]

set 1: address 16 to 31, (16 to 31) + 2KB, (16 to 31) + 4KB, …

block at 16: array[4] through array[7]
block at 16+2KB: array[516] through array[519]

…

set 127: address 2032 to 2047, (2032 to 2047) + 2KB, …

block at 2032: array[508] through array[511]
block at 2032+2KB: array[1020] through array[1023]
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thinking about cache storage (2)
2KB 2-way set associative cache with 16B blocks: block addresses
—
set 0: address 0, 0 + 2KB, 0 + 4KB, …

block at 0: array[0] through array[3]
block at 0+1KB: array[256] through array[259]
block at 0+2KB: array[512] through array[515]
…

set 1: address 16, 16 + 2KB, 16 + 4KB, …

address 16: array[4] through array[7]

…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
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…
set 63: address 1008, 2032 + 2KB, 2032 + 4KB …

address 1008: array[252] through array[255]
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array usage: ijk order

Ax0 AxN

Aik

B0j to BNj

Ci0 to CiN

Bkj

Cij

for all i:
for all j:

for all k:
Cij+ = Aik × Bkj

if N large:
using Cij many times per load into cache
using Aik once per load-into-cache
(but using Ai,k+1 right after)
using Bkj once per load into cache

looking only at innermost loop:
good spatial locality in A
(rows stored together = reuse cache blocks)
bad spatial locality in B
(use each cache block once)
no useful spatial locality in C

looking only at innermost loop:
temporal locality in C
bad temporal locality in everything else
(everything accessed exactly once)

looking only at innermost loop:
row of A (elements used once)
column of B (elements used once)
single element of C (used many times)

looking only at two innermost loops together:
some temporal locality in A (column reused)
some temporal locality in B (row reused)
some temporal locality in C (row reused)

looking only at two innermost loops together:
good spatial locality in A
poor spatial locality in B
good spatial locality in C

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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array usage: kij order

Ax0 AxN

Aik

Bk0 to BkN

Ci0 to CiN

Bkj

Cij

for all k:
for all i:

for all j:
Cij+ = Aik × Bkj

if N large:
using Cij once per load into cache
(but using Ci,j+1 right after)
using Aik many times per load-into-cache
using Bkj once per load into cache
(but using Bk,j+1 right after)

looking only at innermost loop:
spatial locality in B, C
(use most of loaded B, C cache blocks)
no useful spatial locality in A
(rest of A’s cache block wasted)

looking only at innermost loop:
temporal locality in A
no temporal locality in B, C
(B, C values used exactly once)

looking only at two innermost loops together:
good temporal locality in A (column reused)
good temporal locality in B (row reused)
bad temporal locality in C (nothing reused)

looking only at two innermost loops together:
poor spatial locality in A
good spatial locality in B
good spatial locality in C

looking only at innermost loop:
processing one element of A (use many times)
row of B (each element used once)
column of C (each element used once)

Aik reused in innermost loop (over j)
definitely cached (plus rest of cache block)

Akj reused in next middle loop (over i)
reused from cache only if entire row fits

Cij reused in next outer loop
probably not still in cache next time
(but, at least some spatial locality)
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simple blocking – with 3?
for (int kk = 0; kk < N; kk += 3)
for (int i = 0; i < N; i += 1)
for (int j = 0; j < N; ++j) {

C[i*N+j] += A[i*N+kk+0] * B[(kk+0)*N+j];
C[i*N+j] += A[i*N+kk+1] * B[(kk+1)*N+j];
C[i*N+j] += A[i*N+kk+2] * B[(kk+2)*N+j];

}

N

3
· N j-loop iterations, and (assuming N large):

about 1 misses from A per j-loop iteration
N2/3 total misses (before blocking: N2)

about 3N ÷ block size misses from B per j-loop iteration
N3 ÷ block size total misses (same as before)

about 3N ÷ block size misses from C per j-loop iteration
N3 ÷ block size total misses (same as before)
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more than 3?
can we just keep doing this increase from 3 to some large X? …

assumption: X values from A would stay in cache
X too large — cache not big enough

assumption: X blocks from B would help with spatial locality
X too large — evicted from cache before next iteration
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array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

178



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiN

Cij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

178



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

178



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

178



array usage (2 k at a time)

Aik to Ai,k+1

Bk0 to Bk+1,N

Bki to Bk+1,i

Ci0 to CiNCij

for each kk:
for each i:

for each j:
for k=kk,kk+1:

Cij+ = Aik · Bkj

within innermost loop
good spatial locality in A
bad locality in B
good temporal locality in C

loop over j: better spatial locality
over A than before;
still good temporal locality for A

loop over j: spatial locality over B is worse
but probably not more misses
cache needs to keep two cache blocks
for next iter instead of one
(probably has the space left over!)

right now: only really care about
keeping 4 cache blocks in j loop

have more than 4 cache blocks?
increasing kk increment would use more of them

178



keeping values in cache
can’t explicitly ensure values are kept in cache

…but reusing values effectively does this
cache will try to keep recently used values

cache optimization ideas: choose what’s in the cache
for thinking about it: load values explicitly
for implementing it: access only values we want loaded
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TLB and the MMU (1)

MMU
(‘page table walk’ logic)

L1 Cache/Memory

TLB

address
from

program
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TLB and the MMU (2)

11 0101 01 00 1101 1111

× PTE size

0x10000

page table
base register

TLB

+

data or instruction cache

1101 0011 11

check valid
and permission bit

split PTE parts

cause fault?

00 1101 1111
physical address

virtual address

TLB hit: TLB accesses replaces
page table access

TLB miss: page table access happensTLB miss: TLB gets a copy of the page table entry

on hit or miss
need to check permissions
(read/kernel/etc.)
but TLB only stores valid PTEs
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changing page tables
what happens to TLB when page table base pointer is changed?

e.g. context switch

most entries in TLB refer to things from wrong process
oops — read from the wrong process’s stack?

option 1: invalidate all TLB entries
side effect on “change page table base register” instruction

option 2: TLB entries contain process ID
set by OS (special register)
checked by TLB in addition to TLB tag, valid bit
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editing page tables
what happens to TLB when OS changes a page table entry?

most common choice: has to be handled in software

invalid to valid — nothing needed
TLB doesn’t contain invalid entries
MMU will check memory again

valid to invalid — OS needs to tell processor to invalidate it
special instruction (x86: invlpg)

valid to other valid — OS needs to tell processor to invalidate it
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