
1



last time
cache write — what if not yet cached?

write-allocate — cache it
write-no-allocate — don’t

cache write — send to next level immediately?
write-through — update next level right away
write-back — record that it’s modified (“dirty”); update next level later

TLBs — cache for page table entries
virtual page number → (last-level) page table entry
on hit: substitute for entire lookup process, us page table entry
on miss: do (multi-level?) translate, stash page table entry for next time

2



anonymous feedback (1)
“Would it be possible for you to share the annoted slides after a
lecture? Sometimes you draw diagrams or highlight information
that helps with understanding material, but it’s a pain to have to
go through the recordings to find specific slides”

currently don’t have an efficient way of doing this (would need to
extract annotations from recordings)
will work on longer-term

3



cache-programs HW

4



why threads?
concurrency: different things happening at once

one thread per user of web server?
one thread per page in web browser?
one thread to play audio, one to read keyboard, …?
…

parallelism: do same thing with more resources
multiple processors to speed-up simulation (life assignment)

5



single and multithread processes

thread thread thread thread

files pid …

code data …

stack

registers

PC

…

single-threaded process

files pid …

code data …

stack stack stack

registers registers registers

PC PC PC

… … …

multi-threaded process

6



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

main()

pthread_create

pthread_create
ComputePi

… PrintClassList

7



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:
thread identifier
function to run thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument 8



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:
thread identifier
function to run thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument 8



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:
thread identifier
function to run thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument 8



pthread_create
void *ComputePi(void *argument) { ... }
void *PrintClassList(void *argument) { ... }
int main() {

pthread_t pi_thread, list_thread;
pthread_create(&pi_thread, NULL, ComputePi, NULL);
pthread_create(&list_thread, NULL, PrintClassList, NULL);
... /* more code */

}

pthread_create arguments:
thread identifier
function to run thread starts here, terminates if this function returns

thread attributes (extra settings) and function argument 8



a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n"); return NULL;
}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

11



a race
returning from main exits the entire process (all its threads)

same as calling exit; not like other threads

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

12



fixing the race (version 1)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_join(the_thread, NULL); /* WAIT FOR THREAD */
return 0;

}
13



fixing the race (version 2; not recommended)
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n");
return NULL;

}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
pthread_exit(NULL);

}

14



pthread_join, pthread_exit
pthread_join: wait for thread, retrieves its return value

like waitpid, but for a thread
return value is pointer to anything

pthread_exit: exit current thread, returning a value
like exit or returning from main, but for a single thread
same effect as returning from function passed to pthread_create

15



sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i) { sum += values[i]; }
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i) { sum += values[i]; }
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — sharedtwo different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

16



sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i) { sum += values[i]; }
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i) { sum += values[i]; }
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — shared

two different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

16



sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i) { sum += values[i]; }
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i) { sum += values[i]; }
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — shared

two different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

16



sum example (only globals)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

int sum = 0;
for (int i = 0; i < 512; ++i) { sum += values[i]; }
results[0] = sum;
return NULL;

}
void *sum_back(void *ignored_argument) {

int sum = 0;
for (int i = 512; i < 1024; ++i) { sum += values[i]; }
results[1] = sum;
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL); pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

values, results: global variables — sharedtwo different functions
happen to be the same except for some numbers

values returned from threads
via global array instead of return value
(partly to illustrate that memory is shared,
partly because this pattern works when we don’t join (later))

16



thread_sum memory layout
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic
Code / Data

values, results (global)

PC
registers
…

sum_front thread

PC
registers
…

sum_back thread

sum_front
sum_back

17



thread_sum memory layout
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

sum_front_thread stack

sum_back_thread stack

Heap / other dynamic
Code / Data

values, results (global)

PC
registers
…

sum_front thread

PC
registers
…

sum_back thread

sum_front
sum_back

17



sum example (to global, with thread IDs)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

18



sum example (to global, with thread IDs)
int values[1024];
int results[2];
void *sum_thread(void *argument) {

int id = (int) argument;
int sum = 0;
for (int i = id * 512; i < (id + 1) * 512; ++i) {

sum += values[i];
}
results[id] = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

pthread_create(&threads[i], NULL, sum_thread, (void *) i);
}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return results[0] + results[1];

}

values, results: global variables — shared

18



sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

struc tThreadInfo *my_info = (struct ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; struct ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

19



sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

struc tThreadInfo *my_info = (struct ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; struct ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

19



sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

struc tThreadInfo *my_info = (struct ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; struct ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

19



sum example (info struct)
int values[1024];
struct ThreadInfo {

int start, end, result;
};
void *sum_thread(void *argument) {

struc tThreadInfo *my_info = (struct ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) { sum += values[i]; }
my_info->result = sum;
return NULL;

}
int sum_all() {

pthread_t thread[2]; struct ThreadInfo info[2];
for (int i = 0; i < 2; ++i) {

info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, &info[i]);

}
for (int i = 0; i < 2; ++i) { pthread_join(threads[i], NULL); }
return info[0].result + info[1].result;

}

values: global variable — shared

my_info: pointer to sum_all’s stack
only okay because sum_all waits!

19



thread_sum memory layout (info struct)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

threads[0] stack

threads[1] stack

Heap / other dynamic
Code / Data values (global)

info array

my_info

my_info

20



sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

} 21



sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

} 21



sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

} 21



sum example (to main stack)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

sum += my_info->values[i];
}
my_info->result = sum;
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

} 21



program memory (to main stack)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

22



sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

struct ThreadInfo *start_sum_all(int *values) {
struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo);
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
free(info);
return result;

} 23



sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

struct ThreadInfo *start_sum_all(int *values) {
struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo);
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
free(info);
return result;

} 23



sum example (on heap)
struct ThreadInfo { pthread_t thread; int *values; int start; int end; int result };
void *sum_thread(void *argument) {

...
}

struct ThreadInfo *start_sum_all(int *values) {
struct ThreadInfo *info = calloc(2, sizeof(struct ThreadInfo);
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&info[i].thread, NULL, sum_thread, (void *) &info[i]);

}
return info;

}

int finish_sum_all(ThreadInfo *info) {
for (int i = 0; i < 2; ++i)

pthread_join(info[i].thread, NULL);
int result = info[0].result + info[1].result;
free(info);
return result;

} 23



thread_sum memory (heap version)
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

first thread stack

second thread stack

Heap / other dynamic
Code / Data

info array values (stack? heap?)

my_info

my_info

24



what’s wrong with this?
/* omitted: headers */
void *create_string(void *ignored_argument) {

char string[1024];
ComputeString(string);
return string;

}
int main() {

pthread_t the_thread;
pthread_create(&the_thread, NULL, create_string, NULL);
char *string_ptr;
pthread_join(the_thread, (void**) &string_ptr);
printf("string is %s\n", string_ptr);

}

25



program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

26



program memory
0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

main thread stack

second thread stack

third thread stack

Heap / other dynamic
Code / Data

dynamically allocated stacks
string result allocated here
string_ptr pointed to here

…stacks deallocated when
threads exit/are joined

26



thread joining
pthread_join allows collecting thread return value

if you don’t join joinable thread, then memory leak!

avoiding memory leak?

always join…or

“detach” thread to make it not joinable

27



thread joining
pthread_join allows collecting thread return value

if you don’t join joinable thread, then memory leak!

avoiding memory leak?

always join…or

“detach” thread to make it not joinable

27



pthread_detach
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_create(&show_progress_thread, NULL,

show_progress, NULL);

/* instead of keeping pthread_t around to join thread later: */
pthread_detach(show_progress_thread);

}

int main() {
spawn_show_progress_thread();
do_other_stuff();
...

}
detach = don’t care about return value, etc.
system will deallocate when thread terminates

28



starting threads detached
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
pthread_attr_destroy(&attrs);

}

29



setting stack sizes
void *show_progress(void * ...) { ... }
void spawn_show_progress_thread() {

pthread_t show_progress_thread;
pthread_attr_t attrs;
pthread_attr_init(&attrs);
pthread_attr_setstacksize(&attrs, 32 * 1024 /* bytes */);
pthread_create(&show_progress_thread, attrs,

show_progress, NULL);
}

30



a note on error checking
from pthread_create manpage:

special constants for return value

same pattern for many other pthreads functions

will often omit error checking in slides for brevity
31



error checking pthread_create
int error = pthread_create(...);
if (error != 0) {

/* print some error message */
}

32



a threading race
#include <pthread.h>
#include <stdio.h>
void *print_message(void *ignored_argument) {

printf("In the thread\n"); return NULL;
}
int main() {

printf("About to start thread\n");
pthread_t the_thread;
pthread_create(&the_thread, NULL, print_message, NULL);
printf("Done starting thread\n");
return 0;

}

My machine: outputs In the thread about 4% of the time.
What happened?

35



a race
returning from main exits the entire process (all its threads)

same as calling exit; not like other threads

race: main’s return 0 or print_message’s printf first?
time

main: printf/pthread_create/printf/return

print_message: printf/return

return from main
ends all threads
in the process

36



the correctness problem
two threads?

introduces non-determinism

which one runs first?

allows for “race condition” bugs

…to be avoided with synchronization constructs

37



example application: ATM server
commands: withdraw, deposit

one correctness goal: don’t lose money

38



ATM server
(pseudocode)
ServerLoop() {

while (true) {
ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}
Deposit(accountNumber, amount) {

account = GetAccount(accountNumber);
account−>balance += amount;
SaveAccountUpdates(account);

}

39



a threaded server?
Deposit(accountNumber, amount) {

account = GetAccount(accountId);
account−>balance += amount;
SaveAccountUpdates(account);

}

maybe GetAccount/SaveAccountUpdates can be slow?
read/write disk sometimes? contact another server sometimes?

maybe lots of requests to process?
maybe real logic has more checks than Deposit()
…

all reasons to handle multiple requests at once
→ many threads all running the server loop 40



multiple threads
main() {

for (int i = 0; i < NumberOfThreads; ++i) {
pthread_create(&server_loop_threads[i], NULL,

ServerLoop, NULL);
}
...

}

ServerLoop() {
while (true) {

ReceiveRequest(&operation, &accountNumber, &amount);
if (operation == DEPOSIT) {

Deposit(accountNumber, amount);
} else ...

}
}

41



the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch

lost write to balance
“winner” of the racelost track of thread A’s money

42



the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the race

lost track of thread A’s money

42



the lost write
account−>balance += amount; (in two threads, same account)

mov account−>balance, %rax
add amount, %rax

Thread A Thread B

mov account−>balance, %rax
add amount, %rax

mov %rax, account−>balance

mov %rax, account−>balance

context switch

context switch

context switch
lost write to balance

“winner” of the racelost track of thread A’s money
42



thinking about race conditions (1)
what are the possible values of x? (initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

43



thinking about race conditions (1)
what are the possible values of x? (initially x = y = 0)
Thread A Thread B

x← 1 y ← 2

must be 1. Thread B can’t do anything

43



thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2

if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

44



thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3

…and why not 7:
B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0

44



thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

45



thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

45



thinking about race conditions (3)
what are the possible values of x?

(initially x = y = 0)
Thread A Thread B

x← 1 x← 2

1 or 2

…but why not 3?
B: x bit 0 ← 0
A: x bit 0 ← 1
A: x bit 1 ← 0
B: x bit 1 ← 1

45



thinking about race conditions (2)
possible values of x? (initially x = y = 0)
Thread A Thread B
x← y + 1 y ← 2

y ← y × 2
if A goes first, then B: 1
if B goes first, then A: 5
if B line one, then A, then B line two: 3
…and why not 7:

B (start): y ← 2 = 0010TWO; then y bit 3 ← 0; y bit 2 ← 1; then
A: x ← 110TWO + 1 = 7; then
B (finish): y bit 1 ← 0; y bit 0 ← 0 46



atomic operation
atomic operation = operation that runs to completion or not at all

we will use these to let threads work together

most machines: loading/storing (aligned) words is atomic
so can’t get 3 from x← 1 and x← 2 running in parallel
aligned ≈ address of word is multiple of word size (typically done by
compilers)

but some instructions are not atomic; examples:
x86: integer add constant to memory location
many CPUs: loading/storing values that cross cache blocks

e.g. if cache blocks 0x40 bytes, load/store 4 byte from addr. 0x3E is not atomic
47



lost adds (program)
.global update_loop
update_loop:

addl $1, the_value // the_value (global variable) += 1
dec %rdi // argument 1 -= 1
jg update_loop // if argument 1 >= 0 repeat
ret

int the_value;
extern void *update_loop(void *);
int main(void) {

the_value = 0;
pthread_t A, B;
pthread_create(&A, NULL, update_loop, (void*) 1000000);
pthread_create(&B, NULL, update_loop, (void*) 1000000);
pthread_join(A, NULL); pthread_join(B, NULL);
// expected result: 1000000 + 1000000 = 2000000
printf("the_value = %d\n", the_value);

} 48



lost adds (results)

800000 1000000 1200000 1400000 1600000 1800000 2000000
0

1000

2000

3000

4000

5000

fre
qu

en
cy

the_value = ?

49



but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

50



but how?
probably not possible on single core

exceptions can’t occur in the middle of add instruction

…but ‘add to memory’ implemented with multiple steps
still needs to load, add, store internally
can be interleaved with what other cores do

(and actually it’s more complicated than that — we’ll talk later)

50



so, what is actually atomic
for now we’ll assume: load/stores of ‘words’

(64-bit machine = 64-bits words)

in general: processor designer will tell you

their job to design caches, etc. to work as documented

51



backup slides

52



generalizing locks: semaphores
semaphore has a non-negative integer value and two operations:

P() or down or wait:
wait for semaphore to become positive (> 0),
then decerement by 1

V() or up or signal or post:
increment semaphore by 1 (waking up thread if needed)

P, V from Dutch: proberen (test), verhogen (increment)

53



semaphores are kinda integers
semaphore like an integer, but…

cannot read/write directly
down/up operaion only way to access (typically)
exception: initialization

never negative — wait instead
down operation wants to make negative? thread waits

54



reserving books
suppose tracking copies of library book…
Semaphore free_copies = Semaphore(3);
void ReserveBook() {

// wait for copy to be free
free_copies.down();
... // ... then take reserved copy

}

void ReturnBook() {
... // return reserved copy
free_copies.up();
// ... then wakekup waiting thread

} 55



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

3free copiestaken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

2free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



counting resources: reserving books
suppose tracking copies of same library book
non-negative integer count = # how many books used?
up = give back book; down = take book

Copy 1
Copy 2
Copy 3

0free copies

taken out 2
after calling down to reserve

taken out
after calling down to reserve

taken out
taken out
taken out

after calling down three times
to reserve all copies

taken out
taken out
taken out reserve book

call down again
start waiting…

taken out
taken out
taken out reserve book

call down
waiting
done waiting

return book

call up
release waiter

56



implementing mutexes with semaphores
struct Mutex {

Semaphore s; /* with inital value 1 */
/* value = 1 --> mutex if free */
/* value = 0 --> mutex is busy */

}

MutexLock(Mutex *m) {
m−>s.down();

}

MutexUnlock(Mutex *m) {
m−>s.up();

}

57



implementing join with semaphores
struct Thread {

...
Semaphore finish_semaphore; /* with initial value 0 */
/* value = 0: either thread not finished OR already joined */
/* value = 1: thread finished AND not joined */

};
thread_join(Thread *t) {

t−>finish_semaphore.down();
}

/* assume called when thread finishes */
thread_exit(Thread *t) {

t−>finish_semaphore.up();
/* tricky part: deallocating struct Thread safely? */

}

58



POSIX semaphores
#include <semaphore.h>
...
sem_t my_semaphore;
int process_shared = /* 1 if sharing between processes */;
sem_init(&my_semaphore, process_shared, initial_value);
...
sem_wait(&my_semaphore); /* down */
sem_post(&my_semaphore); /* up */
...
sem_destroy(&my_semaphore);

59



semaphore exercise
int value; sem_t empty, ready; // with some initial values

void PutValue(int argument) {
sem_wait(&empty);
value = argument;
sem_post(&ready);

}

int GetValue() {
int result;
_________________
result = value;
_________________
return result;

}

GetValue() waits for PutValue() to happen, retrieves value, then allows next
PutValue().
PutValue() waits for prior GetValue(), places value, then allows next GetValue().

What goes in the blanks?
A: sem_post(&empty) / sem_wait(&ready)
B: sem_wait(&ready) / sem_post(&empty)
C: sem_post(&ready) / sem_wait(&empty)
D: sem_post(&ready) / sem_post(&empty)
E: sem_wait(&empty) / sem_post(&ready)
F: something else

60



semaphore exercise [solution]
int value;
sem_t empty, ready;
void PutValue(int argument) {

sem_wait(&empty);
value = argument;
sem_post(&ready);

}
int GetValue() {

int result;
sem_wait(&ready);
result = value;
sem_post(&empty);
return result;

}
62



semaphore intuition
What do you need to wait for?

critical section to be finished
queue to be non-empty
array to have space for new items

what can you count that will be 0 when you need to wait?
# of threads that can start critical section now
# of threads that can join another thread without waiting
# of items in queue
# of empty spaces in array

use up/down operations to maintain count

63



producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

64



producer/consumer constraints
consumer waits for producer(s) if buffer is empty

producer waits for consumer(s) if buffer is full

any thread waits while a thread is manipulating the buffer

one semaphore per constraint:
sem_t full_slots; // consumer waits if empty
sem_t empty_slots; // producer waits if full
sem_t mutex; // either waits if anyone changing buffer
FixedSizedQueue buffer;

64



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

65



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

65



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queue

exercise: when is full_slots value + empty_slots value
not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

65



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?

No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

65



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

65



producer/consumer: cannot reorder
mutex/empty
ProducerReordered() {

// BROKEN: WRONG ORDER
sem_wait(&mutex);
sem_wait(&empty_slots);

...

sem_post(&mutex);

Consumer() {
sem_wait(&full_slots);

// can't finish until
// Producer's sem_post(&mutex):
sem_wait(&mutex);

...

// so this is not reached
sem_post(&full_slots);

66



producer/consumer pseudocode
sem_init(&full_slots, ..., 0 /* # buffer slots initially used */);
sem_init(&empty_slots, ..., BUFFER_CAPACITY);
sem_init(&mutex, ..., 1 /* # thread that can use buffer at once */);
buffer.set_size(BUFFER_CAPACITY);
...
Produce(item) {

sem_wait(&empty_slots); // wait until free slot, reserve it
sem_wait(&mutex);
buffer.enqueue(item);
sem_post(&mutex);
sem_post(&full_slots); // tell consumers there is more data

}

Consume() {
sem_wait(&full_slots); // wait until queued item, reserve it
sem_wait(&mutex);
item = buffer.dequeue();
sem_post(&mutex);
sem_post(&empty_slots); // let producer reuse item slot
return item;

}

full_slots ≤ number of items on queue
empty_slots ≤ number of free slots on queueexercise: when is full_slots value + empty_slots value

not equal to size of the queue?

Can we do
sem_wait(&mutex);
sem_wait(&empty_slots);

instead?
No. Consumer waits on sem_wait(&mutex)
so can’t sem_post(&empty_slots)
(result: producer waits forever
problem called deadlock)

Can we do
sem_post(&full_slots);
sem_post(&mutex);

instead?
Yes — post never waits

67



producer/consumer summary
producer: wait (down) empty_slots, post (up) full_slots

consumer: wait (down) full_slots, post (up) empty_slots

two producers or consumers?
still works!

68



atomic read-modfiy-write
really hard to build locks for atomic load store

and normal load/stores aren’t even atomic…

…so processors provide read/modify/write operations

one instruction that
atomically
reads and modifies and writes back a value

used by OS to implement higher-level synchronization tools

69



x86 atomic exchange
lock xchg (%ecx), %eax

atomic exchange

temp ← M[ECX]

M[ECX] ← EAX

EAX ← temp

…without being interrupted by other processors, etc.

70



implementing atomic exchange
make sure other processors don’t have cache block

probably need to be able to do this to keep caches in sync

do read+modify+write operation

71



higher level tools
usually we won’t use atomic operations directly

instead rely on OS/standard libraries using them

(along with context switching, disabling interrupts, …)

OS/standard libraries will provide higher-level tools like…

pthread_join

locks (pthread_mutex)

…and more
72



backup slides

73



74



backup slides

75



using atomic exchange?
example: OS wants something done by whichever core tries first
does not want it started twice!
if two cores try at once, only one should do it
int global_flag = 0;
void DoThingIfFirstToTry() {

int my_value = 1;
AtomicExchange(&my_value, &global_flag);
if (my_value == 0) {

/* flag was zero before, so I was first!*/
DoThing();

} else {
/* flag was already 1 when we exchanged */
/* I was second, so some other core is handling it */

}
} 76



recall: pthread mutex
#include <pthread.h>

pthread_mutex_t some_lock;
pthread_mutex_init(&some_lock, NULL);
// or: pthread_mutex_t some_lock = PTHREAD_MUTEX_INITIALIZER;
...
pthread_mutex_lock(&some_lock);
...
pthread_mutex_unlock(&some_lock);
pthread_mutex_destroy(&some_lock);

77



life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

78



life homework even/odd
naive way has an operation that needs locking:
for (int time = 0; time < MAX_ITERATIONS; ++time) {

... compute to_grid ...
swap(from_grid, to_grid);

}

but this alternative needs less locking:
Grid grids[2];
for (int time = 0; time < MAX_ITERATIONS; ++time) {

from_grid = &grids[time % 2];
to_grid = &grids[(time % 2) + 1];
... compute to_grid ...

}

78



→

→

swap
→

←

79



x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

80



x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

80



x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

80



x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

80



x86-64 spinlock with xchg
lock variable in shared memory: the_lock
if 1: someone has the lock; if 0: lock is free to take
acquire:

movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1 (taken)
// sets %eax to prior val. of the_lock

test %eax, %eax // if the_lock wasn't 0 before:
jne acquire // try again
ret

release:
mfence // for memory order reasons
movl $0, the_lock // then, set the_lock to 0 (not taken)
ret

set lock variable to 1 (taken)
read old value

if lock was already locked retry
“spin” until lock is released elsewhere

release lock by setting it to 0 (not taken)
allows looping acquire to finish

Intel’s manual says:
no reordering of loads/stores across a lock
or mfence instruction

80



exercise: spin wait
consider implementing ‘waiting’ functionality of pthread_join

thread calls ThreadFinish() when done
complete code below:
finished: .quad 0
ThreadFinish:

_________________________
ret

ThreadWaitForFinish:
_________________________
lock xchg %eax, finished
cmp $0, %eax
____ ThreadWaitForFinish
ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

81



exercise: spin wait
finished: .quad 0
ThreadFinish:

__________A______________
ret

ThreadWaitForFinish: /* or without using a writing instruction: */
_________B______________ mov %eax, finished
lock xchg %eax, finished mfence
cmp $0, %eax cmp $0, %eax
__C_ ThreadWaitForFinish je ThreadWaitForFinish
ret ret

A. mfence; mov $1, finished C. mov $0, %eax E. je
B. mov $1, finished; mfence D. mov $1, %eax F. jne

83



spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

84



spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

85



mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

86



mutexes: intelligent waiting
want: locks that wait better

example: POSIX mutexes

instead of running infinite loop, give away CPU

lock = go to sleep, add self to list
sleep = scheduler runs something else

unlock = wake up sleeping thread

86



better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

87



better lock implementation idea
shared list of waiters

spinlock protects list of waiters from concurrent modification

lock = use spinlock to add self to list, then wait without spinlock

unlock = use spinlock to remove item from list

87



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)

tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlocked

list of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {
put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

}

88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 88



one possible implementation
struct Mutex {

SpinLock guard_spinlock;
bool lock_taken = false;
WaitQueue wait_queue;

};

spinlock protecting lock_taken and wait_queue
only held for very short amount of time (compared to mutex itself)
tracks whether any thread has locked and not unlockedlist of threads that discovered lock is taken
and are waiting for it be free
these threads are not runnable

instead of setting lock_taken to false
choose thread to hand-off lock to

LockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->lock_taken) {

put current thread on m->wait_queue
mark current thread as waiting
/* xv6: myproc()->state = SLEEPING; */
UnlockSpinlock(&m->guard_spinlock);
run scheduler (context switch)

} else {
m->lock_taken = true;
UnlockSpinlock(&m->guard_spinlock);

}
}

subtly: if UnlockMutex runs here on another core
need to make sure scheduler on the other core doesn’t switch to thread
while it is still running (would ‘clone’ thread/mess up registers)

UnlockMutex(Mutex *m) {
LockSpinlock(&m->guard_spinlock);
if (m->wait_queue not empty) {

remove a thread from m->wait_queue
mark thread as no longer waiting
/* xv6: myproc()->state = RUNNABLE; */

} else {
m->lock_taken = false;

}
UnlockSpinlock(&m->guard_spinlock);

} 88



mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

89



mutex and scheduler subtly
core 0 (thread A) core 1 (thread B)
start LockMutex
acquire spinlock
discover lock taken
enqueue thread A
thread A set not runnable
release spinlock start UnlockMutex

thread A set runnable
finish UnlockMutex
run scheduler
scheduler switches to A
…with old verison of registers

thread A runs scheduler …
…finally saving registers …

Linux soln.: track ‘thread running’ separately from ‘thread
runnable’
xv6 soln.: hold scheduler lock until thread A saves registers

89



mutex efficiency
‘normal’ mutex uncontended case:

lock: acquire + release spinlock, see lock is free
unlock: acquire + release spinlock, see queue is empty

not much slower than spinlock

90



implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

91



implementing locks: single core
intuition: context switch only happens on interrupt

timer expiration, I/O, etc. causes OS to run

solution: disable them
reenable on unlock

x86 instructions:
cli — disable interrupts
sti — enable interrupts

91



naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

92



naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

92



naive interrupt enable/disable (1)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: user can hang the system:
Lock(some_lock);
while (true) {}

problem: can’t do I/O within lock
Lock(some_lock);
read from disk

/* waits forever for (disabled) interrupt
from disk IO finishing */

92



naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

93



naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

93



naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

93



naive interrupt enable/disable (2)
Lock() {

disable interrupts
}

Unlock() {
enable interrupts

}

problem: nested locks
Lock(milk_lock);
if (no milk) {

Lock(store_lock);
buy milk
Unlock(store_lock);
/* interrupts enabled here?? */

}
Unlock(milk_lock);

93



C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

94



C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

94



C++ containers and locking
can you use a vector from multiple threads?
…question: how is it implemented?

dynamically allocated array
reallocated on size changes

can access from multiple threads …as long as not
append/erase/etc.?
assuming it’s implemented like we expect…

but can we really depend on that?
e.g. could shrink internal array after a while with no expansion save
memory?

94



C++ standard rules for containers
multiple threads can read anything at the same time

can only read element if no other thread is modifying it

can safely add/remove elements if no other threads are accessing
container

(sometimes can safely add/remove in extra cases)

exception: vectors of bools — can’t safely read and write at same
time

might be implemented by putting multiple bools in one int

95



a simple race
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A

96



a simple race
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

if loads/stores atomic, then possible results:
A:1 B:1 — both moves into x and y, then both moves into eax execute
A:0 B:1 — thread A executes before thread B
A:1 B:0 — thread B executes before thread A 96



a simple race: results
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ??? 97



a simple race: results
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

x = y = 0;
pthread_create(&A, NULL, thread_A, NULL);
pthread_create(&B, NULL, thread_B, NULL);
pthread_join(A, &A_result); pthread_join(B, &B_result);
printf("A:%d B:%d\n", (int) A_result, (int) B_result);

my desktop, 100M trials:
frequency result

99 823 739 A:0 B:1 (‘A executes before B’)
171 161 A:1 B:0 (‘B executes before A’)

4 706 A:1 B:1 (‘execute moves into x+y first’)
394 A:0 B:0 ??? 97



why reorder here?
thread_A:

movl $1, x /* x <- 1 */
movl y, %eax /* return y */
ret

thread_B:
movl $1, y /* y <- 1 */
movl x, %eax /* return x */
ret

thread A: faster to load y right now!

…rather than wait for write of x to finish

98



why load/store reordering?
fast processor designs can execute instructions out of order

goal: do something instead of waiting for slow memory accesses,
etc.

more on this later in the semester

99



GCC: preventing reordering example (1)
void Alice() {

int one = 1;
__atomic_store(&note_from_alice, &one, __ATOMIC_SEQ_CST);
do {
} while (__atomic_load_n(&note_from_bob, __ATOMIC_SEQ_CST));
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

100



GCC: preventing reordering example (2)
void Alice() {

note_from_alice = 1;
do {

__atomic_thread_fence(__ATOMIC_SEQ_CST);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L3:
mfence // make sure store is visible to other cores before loading

// on x86: not needed on second+ iteration of loop
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L3
cmpl $0, no_milk
...

101



exercise: fetch-and-add with
compare-and-swap
exercise: implement fetch-and-add with compare-and-swap
compare_and_swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

102



solution
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

103



xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

104



xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{

pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

104



xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

104



xv6 spinlock: acquire
void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
...
// The xchg is atomic.
while(xchg(&lk−>locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();
...

}

don’t let us be interrupted after while have the lock
problem: interruption might try to do something with the lock
…but that can never succeed until we release the lock
…but we won’t release the lock until interruption finishes

xchg wraps the lock xchg instruction
same loop as before

avoid load store reordering (including by compiler)
on x86, xchg alone is enough to avoid processor’s reordering
(but compiler may need more hints)

104



xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

105



xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>lockedreenable interrupts (taking nested locks into account)

105



xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorder

turns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

105



xv6 spinlock: release
void
release(struct spinlock *lk)
...
// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk−>locked) : );

popcli();
}

turns into instruction to tell processor not to reorder
plus tells compiler not to reorderturns into mov of constant 0 into lk−>locked

reenable interrupts (taking nested locks into account)

105



fetch-and-add with CAS (1)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true;

} else {
return false;

}
}

long my_fetch_and_add(long *pointer, long amount) { ... }

implementation sketch:
fetch value from pointer old
compute in temporary value result of addition new
try to change value at pointer from old to new
[compare-and-swap]
if not successful, repeat 106



fetch-and-add with CAS (2)
long my_fetch_and_add(long *p, long amount) {

long old_value;
do {

old_value = *p;
} while (!compare_and_swap(p, old_value, old_value + amount);
return old_value;

}

107



exercise: append to singly-linked list
ListNode is a singly-linked list

assume: threads only append to list (no deletions, reordering)

use compare-and-swap(pointer, old, new):
atomically change *pointer from old to new
return true if successful
return false (and change nothing) if *pointer is not old

void append_to_list(ListNode *head, ListNode *new_last_node) {
...

}

108



append to singly-linked list
/* assumption: other threads may be appending to list,
* but nodes are not being removed, reordered, etc.
*/

void append_to_list(ListNode *head, ListNode *new_last_node) {
memory_ordering_fence();
ListNode *current_last_node;
do {
current_last_node = head;
while (current_last_node−>next) {

current_last_node = current_last_node−>next;
}

} while (
!compare−and−swap(&current_last_node−>next,

NULL, new_last_node)
);

}

110



some common atomic operations (1)
// x86: emulate with exchange
test_and_set(address) {

old_value = memory[address];
memory[address] = 1;
return old_value != 0; // e.g. set ZF flag

}

// x86: xchg REGISTER, (ADDRESS)
exchange(register, address) {

temp = memory[address];
memory[address] = register;
register = temp;

}

111



some common atomic operations (2)
// x86: mov OLD_VALUE, %eax; lock cmpxchg NEW_VALUE, (ADDRESS)
compare−and−swap(address, old_value, new_value) {

if (memory[address] == old_value) {
memory[address] = new_value;
return true; // x86: set ZF flag

} else {
return false; // x86: clear ZF flag

}
}

// x86: lock xaddl REGISTER, (ADDRESS)
fetch−and−add(address, register) {

old_value = memory[address];
memory[address] += register;
register = old_value;

}

112



common atomic operation pattern
try to do operation, …

detect if it failed

if so, repeat

atomic operation does “try and see if it failed” part

113



cache coherency states
extra information for each cache block

overlaps with/replaces valid, dirty bits

stored in each cache

update states based on reads, writes and heard messages on bus

different caches may have different states for same block

114



MSI state summary
Modified value may be different than memory and I am the

only one who has it

Shared value is the same as memory

Invalid I don’t have the value; I will need to ask for it

115



MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus

example: write while Shared
must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

116



MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy

116



MSI scheme
from state hear read hear write read write
Invalid — — to Shared to Modified
Shared — to Invalid — to Modified
Modified to Shared to Invalid — —

blue: transition requires sending message on bus
example: write while Shared

must send write — inform others with Shared state
then change to Modified

example: hear write while Shared
change to Invalid
can send read later to get value from writer

example: write while Modified
nothing to do — no other CPU can have a copy 116



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 100101 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 101102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Modified
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)

“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100 Invalid
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI example

CPU1 CPU2 MEM1
address value state
0xA300 102 Shared
0xC400 200 Shared
0xE500 300 Shared

address value state
0x9300 172 Shared
0xA300 100102 Shared
0xC500 200 Shared

“CPU1 is writing 0xA3000”

CPU1 writes 101 to 0xA300

cache sees write:
invalidate 0xA300

maybe update memory?

CPU1 writes 102 to 0xA300

modified state — nothing communicated!
will “fix” later if there’s a read

nothing changed yet (writeback)
“What is 0xA300?”

CPU2 reads 0xA300

modified state — must update for CPU2!

“Write 102 into 0xA300”

CPU2 reads 0xA300

written back to memory early
(could also become Invalid at CPU1)

117



MSI: update memory
to write value (enter modified state), need to invalidate others

can avoid sending actual value (shorter message/faster)

“I am writing address X” versus “I am writing Y to address X”

118



MSI: on cache replacement/writeback
still happens — e.g. want to store something else

changes state to invalid

requires writeback if modified (= dirty bit)

119



cache coherency exercise
modified/shared/invalid; all initially invalid; 32B blocks, 8B
read/writes

CPU 1: read 0x1000
CPU 2: read 0x1000
CPU 1: write 0x1000
CPU 1: read 0x2000
CPU 2: read 0x1000
CPU 2: write 0x2008
CPU 3: read 0x1008

Q1: final state of 0x1000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

Q2: final state of 0x2000 in caches?
Modified/Shared/Invalid for CPU 1/2/3
CPU 1: CPU 2: CPU 3:

120



cache coherency exercise solution
0x1000-0x101f 0x2000-0x201f

action CPU 1 CPU 2 CPU 3 CPU 1 CPU 2 CPU 3
I I I I I I

CPU 1: read 0x1000 S I I I I I
CPU 2: read 0x1000 S S I I I I
CPU 1: write 0x1000 M I I I I I
CPU 1: read 0x2000 M I I S I I
CPU 2: read 0x1000 S S I S I I
CPU 2: write 0x2008 S S I I M I
CPU 3: read 0x1008 S S S I M I

122



why load/store reordering?
fast processor designs can execute instructions out of order

goal: do something instead of waiting for slow memory accesses,
etc.

more on this later in the semester

123



C++: preventing reordering
to help implementing things like pthread_mutex_lock

C++ 2011 standard: atomic header, std::atomic class

prevent CPU reordering and prevent compiler reordering

also provide other tools for implementing locks (more later)

could also hand-write assembly code
compiler can’t know what assembly code is doing

124



C++: preventing reordering example
#include <atomic>
void Alice() {

note_from_alice = 1;
do {

std::atomic_thread_fence(std::memory_order_seq_cst);
} while (note_from_bob);
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice // note_from_alice <- 1

.L2:
mfence // make sure store visible on/from other cores
cmpl $0, note_from_bob // if (note_from_bob == 0) repeat fence
jne .L2
cmpl $0, no_milk
...

125



C++ atomics: no reordering
std::atomic<int> note_from_alice, note_from_bob;
void Alice() {

note_from_alice.store(1);
do {
} while (note_from_bob.load());
if (no_milk) {++milk;}

}

Alice:
movl $1, note_from_alice
mfence

.L2:
movl note_from_bob, %eax
testl %eax, %eax
jne .L2
...

126



GCC: built-in atomic functions
used to implement std::atomic, etc.

predate std::atomic

builtin functions starting with __sync and __atomic

these are what xv6 uses

127



aside: some x86 reordering rules
each core sees its own loads/stores in order

(if a core stores something, it can always load it back)

stores from other cores appear in a consistent order
(but a core might observe its own stores too early)

causality :
if a core reads X=a and (after reading X=a) writes Y=b,
then a core that reads Y=b cannot later read X=older value than a

Source: Intel 64 and IA-32 Software Developer’s Manual, Volume 3A, Chapter 8 128



how do you do anything with this?
difficult to reason about what modern CPU’s reordering rules do

typically: don’t depend on details, instead:

special instructions with stronger (and simpler) ordering rules
often same instructions that help with implementing locks in other ways

special instructions that restrict ordering of instructions around
them (“fences”)

loads/stores can’t cross the fence

129



spinlock problems
lock abstraction is not powerful enough

lock/unlock operations don’t handle “wait for event”
common thing we want to do with threads
solution: other synchronization abstractions

spinlocks waste CPU time more than needed
want to run another thread instead of infinite loop
solution: lock implementation integrated with scheduler

spinlocks can send a lot of messages on the shared bus
more efficient atomic operations to implement locks

130



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock --- Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock --- Invalid

address value state
lock locked Modified

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock --- Invalid

address value state
lock locked Modified

address value state
lock Invalid

“I want to modify lock?”

CPU2 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU3 read-modify-writes lock
(to see it is still locked)

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock

131



ping-ponging
test-and-set problem: cache block “ping-pongs” between caches

each waiting processor reserves block to modify
could maybe wait until it determines modification needed — but not
typical implementation

each transfer of block sends messages on bus

…so bus can’t be used for real work
like what the processor with the lock is doing

132



test-and-test-and-set (pseudo-C)
acquire(int *the_lock) {

do {
while (ATOMIC−READ(the_lock) == 0) { /* try again */ }

} while (ATOMIC−TEST−AND−SET(the_lock) == ALREADY_SET);
}

133



test-and-test-and-set (assembly)
acquire:

cmp $0, the_lock // test the lock non-atomically
// unlike lock xchg --- keeps lock in Shared state!

jne acquire // try again (still locked)
// lock possibly free
// but another processor might lock
// before we get a chance to
// ... so try wtih atomic swap:
movl $1, %eax // %eax <- 1
lock xchg %eax, the_lock // swap %eax and the_lock

// sets the_lock to 1
// sets %eax to prior value of the_lock

test %eax, %eax // if the_lock wasn't 0 (someone else got it first):
jne acquire // try again
ret

134



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock locked Shared

address value state
lock locked Shared

address value state
lock locked Shared

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)

CPU2, CPU3 continue to read lock from cache
no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock unlockedModified

address value state
lock --- Invalid

address value state
lock --- Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



less ping-ponging

CPU1 CPU2 CPU3 MEM1
address value state
lock Modified

address value state
lock Invalid

address value state
lock Invalid

“I want to read lock?”

CPU2 reads lock
(to see it is still locked)

“set lock to locked”

CPU1 writes back lock value,
then CPU2 reads it

“I want to read lock”

CPU3 reads lock
(to see it is still locked)
CPU2, CPU3 continue to read lock from cache

no messages on the bus

“I want to modify lock”

CPU1 sets lock to unlocked

“I want to modify lock”

some CPU (this example: CPU2) acquires lock
(CPU1 writes back value, then CPU2 reads + modifies it)

135



couldn’t the read-modify-write instruction…
notice that the value of the lock isn’t changing…

and keep it in the shared state

maybe — but extra step in “common” case
(swapping different values)

136



more room for improvement?
can still have a lot of attempts to modify locks after unlocked

there other spinlock designs that avoid this
ticket locks
MCS locks
…

137



MSI extensions
real cache coherency protocols sometimes more complex:

separate tracking modifications from whether other caches have
copy

send values directly between caches (maybe skip write to memory)

send messages only to cores which might care (no shared bus)

138



too much milk
roommates Alice and Bob want to keep fridge stocked with milk:
time Alice Bob
3:00 look in fridge. no milk
3:05 leave for store
3:10 arrive at store look in fridge. no milk
3:15 buy milk leave for store
3:20 return home, put milk in fridge arrive at store
3:25 buy milk
3:30 return home, put milk in fridge

how can Alice and Bob coordinate better?

139



too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?

140



too much milk “solution” 1 (algorithm)
leave a note: “I am buying milk”

place before buying, remove after buying
don’t try buying if there’s a note

≈ setting/checking a variable (e.g. “note = 1”)
with atomic load/store of variable

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

exercise: why doesn’t this work?
140



too much milk “solution” 1 (timeline)
if (no milk) {

if (no note) {

Alice Bob

if (no milk) {
if (no note) {

leave note;
buy milk;
remove note;

}
}

leave note;
buy milk;
remove note;

}
} 141



too much milk “solution” 2 (algorithm)
intuition: leave note when buying or checking if need to buy
leave note;
if (no milk) {

if (no note) {
buy milk;

}
}
remove note;

142



too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

143



too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note

…will never buy milk (twice or once)

143



too much milk: “solution” 2 (timeline)
leave note;
if (no milk) {

if (no note) {

Alice

buy milk;
}

}
remove note;

but there’s always a note
…will never buy milk (twice or once)

143



“solution” 3: algorithm
intuition: label notes so Alice knows which is hers (and vice-versa)

computer equivalent: separate noteFromAlice and noteFromBob
variables

leave note from Alice;
if (no milk) {

if (no note from Bob) {
buy milk

}
}
remove note from Alice;

Alice
leave note from Bob;
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob;

Bob

144



too much milk: “solution” 3 (timeline)
leave note from Alice
if (no milk) {

Alice Bob

leave note from Bob
if (no note from Bob) {

buy milk
}

}
if (no milk) {

if (no note from Alice) {
buy milk

}
}
remove note from Bob

remove note from Alice 145



too much milk: is it possible
is there a solutions with writing/reading notes?

≈ loading/storing from shared memory

yes, but it’s not very elegant

146



too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

147



too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

147



too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

147



too much milk: solution 4 (algorithm)
leave note from Alice
while (note from Bob) {

do nothing
}
if (no milk) {

buy milk
}
remove note from Alice

Alice
leave note from Bob
if (no note from Alice) {

if (no milk) {
buy milk

}
}
remove note from Bob

Bob

exercise (hard): prove (in)correctness

exercise (hard): extend to three people

147



Peterson’s algorithm
general version of solution

see, e.g., Wikipedia

we’ll use special hardware support instead

148



mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

149



mfence
x86 instruction mfence

make sure all loads/stores in progress finish

…and make sure no loads/stores were started early

fairly expensive
Intel ‘Skylake’: order 33 cycles + time waiting for pending stores/loads

aside: this instruction is did not exist in the original x86
so xv6 uses something older that’s equivalent

149



modifying cache blocks in parallel
cache coherency works on cache blocks

but typical memory access — less than cache block
e.g. one 4-byte array element in 64-byte cache block

what if two processors modify different parts same cache block?
4-byte writes to 64-byte cache block

cache coherency — write instructions happen one at a time:
processor ‘locks’ 64-byte cache block, fetching latest version
processor updates 4 bytes of 64-byte cache block
later, processor might give up cache block

150



modifying things in parallel (code)
void *sum_up(void *raw_dest) {

int *dest = (int *) raw_dest;
for (int i = 0; i < 64 * 1024 * 1024; ++i) {

*dest += data[i];
}

}

__attribute__((aligned(4096)))
int array[1024]; /* aligned = address is mult. of 4096 */

void sum_twice(int distance) {
pthread_t threads[2];
pthread_create(&threads[0], NULL, sum_up, &array[0]);
pthread_create(&threads[1], NULL, sum_up, &array[distance]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);

}
151



performance v. array element gap
(assuming sum_up compiled to not omit memory accesses)

10 20 30 40 50 60 70
distance between array elements (bytes)

0

100000000

200000000

300000000

400000000

500000000

tim
e 

(c
yc

le
s)

152



false sharing
synchronizing to access two independent things

two parts of same cache block

solution: separate them

153



exercise (1)
int values[1024];
int results[2];
void *sum_front(void *ignored_argument) {

results[0] = 0;
for (int i = 0; i < 512; ++i)

results[0] += values[i];
return NULL;

}
void *sum_back(void *ignored_argument) {

results[1] = 0;
for (int i = 512; i < 1024; ++i)

results[1] += values[i];
return NULL;

}
int sum_all() {

pthread_t sum_front_thread, sum_back_thread;
pthread_create(&sum_front_thread, NULL, sum_front, NULL);
pthread_create(&sum_back_thread, NULL, sum_back, NULL);
pthread_join(sum_front_thread, NULL);
pthread_join(sum_back_thread, NULL);
return results[0] + results[1];

}

Where is false sharing likely to occur? How to fix?

154



exercise (2)
struct ThreadInfo { int *values; int start; int end; int result };
void *sum_thread(void *argument) {

ThreadInfo *my_info = (ThreadInfo *) argument;
int sum = 0;
for (int i = my_info->start; i < my_info->end; ++i) {

my_info->result += my_info->values[i];
}
return NULL;

}
int sum_all(int *values) {

ThreadInfo info[2]; pthread_t thread[2];
for (int i = 0; i < 2; ++i) {

info[i].values = values; info[i].start = i*512; info[i].end = (i+1)*512;
pthread_create(&threads[i], NULL, sum_thread, (void *) &info[i]);

}
for (int i = 0; i < 2; ++i)

pthread_join(threads[i], NULL);
return info[0].result + info[1].result;

}

Where is false sharing likely to occur?
155



connecting CPUs and memory
multiple processors, common memory

how do processors communicate with memory?

156



shared bus

CPU1 CPU2 CPU3 CPU4 MEM1 MEM2

one possible design
we’ll revisit later when we talk about I/O

tagged messages — everyone gets everything, filters

contention if multiple communicators
some hardware enforces only one at a time

157



shared buses and scaling
shared buses perform poorly with “too many” CPUs

so, there are other designs

we’ll gloss over these for now

158



shared buses and caches
remember caches?

memory is pretty slow

each CPU wants to keep local copies of memory

what happens when multiple CPUs cache same memory?

159



the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

160



the cache coherency problem

CPU1 CPU2 MEM1
address value
0xA300 100101
0xC400 200
0xE500 300

CPU1’s cache

address value
0x9300 172
0xA300 100
0xC500 200

CPU2’s cache

CPU1 writes 101 to 0xA300?

When does this change?

When does this change?

160



monitor exercise: ConsumeTwo
suppose we want producer/consumer, but…
but change Consume() to ConsumeTwo() which returns a pair of
values

and don’t want two calls to ConsumeTwo() to wait…
with each getting one item

what should we change below?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
161



monitor exercise: solution (1)
(one of many possible solutions)
Assuming ConsumeTwo replaces Consume:
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
if (buffer.size() > 1) { pthread_cond_signal(&data_ready); }
pthread_mutex_unlock(&lock);

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

162



monitor exercise: solution (2)
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using two CVs):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&one_ready);
if (buffer.size() > 1) { pthread_cond_signal(&two_ready); }
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&one_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&two_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

163



monitor exercise: slower solution
(one of many possible solutions)
Assuming ConsumeTwo is in addition to Consume (using one CV):
Produce() {

pthread_mutex_lock(&lock);
buffer.enqueue(item);
// broadcast and not signal, b/c we might wakeup only ConsumeTwo() otherwise
pthread_cond_broadcast(&data_ready);
pthread_mutex_unlock(&lock);

}
Consume() {

pthread_mutex_lock(&lock);
while (buffer.size() < 1) { pthread_cond_wait(&data_ready, &lock); }
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}
ConsumeTwo() {

pthread_mutex_lock(&lock);
while (buffer.size() < 2) { pthread_cond_wait(&data_ready, &lock); }
item1 = buffer.dequeue(); item2 = buffer.dequeue();
pthread_mutex_unlock(&lock);
return Combine(item1, item2);

}

164



monitor exercise: ordering
suppose we want producer/consumer, but…

but want to ensure first call to Consume() always returns first

(no matter what ordering cond_signal/cond_broadcast use)
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
pthread_cond_signal(&data_ready);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

165



monitor ordering exercise: solution
(one of many possible solutions)
struct Waiter {

pthread_cond_t cv;
bool done;
T item;

}
Queue<Waiter*> waiters;

Produce(item) {
pthread_mutex_lock(&lock);
if (!waiters.empty()) {

Waiter *waiter = waiters.dequeue();
waiter->done = true;
waiter->item = item;
cond_signal(&waiter->cv);
++num_pending;

} else {
buffer.enqueue(item);

}
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
if (buffer.empty()) {

Waiter waiter;
cond_init(&waiter.cv);
waiter.done = false;
waiters.enqueue(&waiter);
while (!waiter.done)
cond_wait(&waiter.cv, &lock);

item = waiter.item;
} else {

item = buffer.dequeue();
}
pthread_mutex_unlock(&lock):
return item;

}

166



producer/consumer signal?
pthread_mutex_t lock;
pthread_cond_t data_ready;
UnboundedQueue buffer;

Produce(item) {
pthread_mutex_lock(&lock);
buffer.enqueue(item);
/* GOOD CODE: pthread_cond_signal(&data_ready); */
/* BAD CODE: */
if (buffer.size() == 1)

pthread_cond_signal(&item);
pthread_mutex_unlock(&lock);

}

Consume() {
pthread_mutex_lock(&lock);
while (buffer.empty()) {

pthread_cond_wait(&data_ready, &lock);
}
item = buffer.dequeue();
pthread_mutex_unlock(&lock);
return item;

}

exercise: come up with scenario in which this doesn’t work.
hint 1: assume two waiting consume()s, and two produce() calls
hint 2: related to Mesa-style versus Hoare-style

signaling thread 6 =⇒ thread gets lock next

167



bad case (setup)
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

169



bad case
thread 0 1 2 3
Consume():
lock
empty? wait on cv Consume():

lock
empty? wait on cv

Produce():
lock Produce():

wait for lock
enqueue

wait for lock size = 1? signal
unlock gets lock

enqueue
size 6= 1: don’t signal
unlock

gets lock
dequeue

still waiting
171



Anderson-Dahlin and semaphores
Anderson/Dahlin complains about semaphores

“Our view is that programming with locks and condition variables is
superior to programming with semaphores.”

argument 1: clearer to have separate constructs for
waiting for condition to be come true, and
allowing only one thread to manipulate a thing at a time

arugment 2: tricky to verify thread calls up exactly once for every
down

alternatives allow one to be sloppier (in a sense)

172



monitors with semaphores: locks
sem_t semaphore; // initial value 1

Lock() {
sem_wait(&semaphore);

}

Unlock() {
sem_post(&semaphore);

}

173



monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

174



monitors with semaphores: [broken] cvs
start with only wait/signal:
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {

lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}
Signal() {

sem_post(&threads_to_wakeup);
}

problem: signal wakes up non-waiting threads (in the far future)

174



monitors with semaphores: cvs (better)
start with only wait/signal:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Signal() {
sem_wait(&private_lock);
if (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

175



monitors with semaphores: broadcast
now allows broadcast:
sem_t private_lock; // initially 1
int num_waiters;
sem_t threads_to_wakeup; // initially 0
Wait(Lock lock) {
sem_wait(&private_lock);
++num_waiters;
sem_post(&private_lock);
lock.Unlock();
sem_wait(&threads_to_wakeup);
lock.Lock();

}

Broadcast() {
sem_wait(&private_lock);
while (num_waiters > 0) {

sem_post(&threads_to_wakeup);
--num_waiters;

}
sem_post(&private_lock);

}

176



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state

shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

177



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

177



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes

177



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes
177



building semaphore with monitors
pthread_mutex_t lock;
unsigned int count;
/* condition, broadcast when becomes count > 0 */
pthread_cond_t count_is_positive_cv;
void down() {

pthread_mutex_lock(&lock);
while (!(count > 0)) {

pthread_cond_wait(
&count_is_positive_cv,
&lock);

}
count -= 1;
pthread_mutex_unlock(&lock);

}

void up() {
pthread_mutex_lock(&lock);
count += 1;
/* count must now be

positive, and at most
one thread can go per
call to Up() */

pthread_cond_signal(
&count_is_positive_cv

);
pthread_mutex_unlock(&lock);

}lock to protect shared state
shared state: semaphore tracks a count

add cond var for each reason we wait
semaphore: wait for count to become positive (for down)

wait using condvar; broadcast/signal when condition changes
177



binary semaphores
binary semaphores — semaphores that are only zero or one

as powerful as normal semaphores
exercise: simulate counting semaphores with binary semaphores (more
than one) and an integer

178



counting semaphores with binary semaphores
via Hemmendinger, “Comments on ‘A correect and unrestrictive implementation of general semaphores’ ” (1989); Barz, “Implementing semaphores by binary

semaphores” (1983)

// assuming initialValue > 0
BinarySemaphore mutex(1);
int value = initialValue ;
BinarySemaphore gate(1 /* if initialValue >= 1 */);

/* gate = # threads that can Down() now */

void Down() {
gate.Down();
// wait, if needed
mutex.Down();
value -= 1;
if (value > 0) {
gate.Up();
// because next down should finish
// now (but not marked to before)

}
mutex.Up();

}

void Up() {
mutex.Down();
value += 1;
if (value == 1) {
gate.Up();
// because down should finish now
// but could not before

}
mutex.Up();

}

179



gate intuition/pattern
pattern to allow one thread at a time:
sem_t gate; // 0 = closed; 1 = open
ReleasingThread() {

... // finish what the other thread is waiting for
while (another thread is waiting and can go) {

sem_post(&gate) // allow EXACTLY ONE thread
... // other bookkeeping

}
...

}
WaitingThread() {

... // indicate that we're waiting
sem_wait(&gate) // wait for gate to be open
... // indicate that we're not waiting

} 180


	threads
	why threads?
	thread v. processes
	pthread create
	exercise: pthread create race
	pthread join and exit
	parallel calculations in threads
	passing info to threads
	thread ID as argument
	globals + info struct as argument
	no globals + info struct as argument
	everything on the heap

	on thread resources, detached threads
	exercise
	join, detach, etc.

	on error checking

	introduction: correctness
	the lost write
	motivation: threaded ATM server?
	example

	race conditions and atomicity
	thinking about simple races
	atomicity definition
	example: x86 add not atomic
	what is atomic?

	backup slides
	counting semaphores
	introduction
	examples
	POSIX semaphores
	semaphore exercise
	semaphore intuition

	producer/consumer with counting semaphores
	read-modify-write atomic operations
	x86 atomic exchange
	but higher-level tools

	backup slides
	backup sides
	higher-level tools from RMW
	recall: POSIX mutexes
	even/odd idea for life hw
	x86-64 spinlock
	exercise: spin-wait
	spinlock problems
	locks that sleep
	pseudocode
	need for scheduler integration
	analysis: uncontended case

	disabling interrupts for locks
	aside: standard container rules
	processor reordering
	why reorder?
	GCC atomic/sync stuff
	exercise: atomic add
	xv6's spinlock debugging
	CAS for fetch-and-add
	exercise: CAS for appending to list
	more atomic operations
	cache coherency detail
	adding more state: MSI
	exercise

	processor load/store reordering
	C++atomic/sync stuff
	x86-64 reordering rules
	test-and-test-and-set
	beyond MSI

	too much milk: locks from load/store?
	setup: buying milk
	wrong solution 1: missed notes
	wrong solution 2: read own note
	wrong solution 3: too little milk
	correct solution: Peterson's algorithm
	mfence
	false sharing
	exercise


	cache coherency
	preview: processor buses
	problem setup / snooping
	the cache coherency problem

	exercise: ConsumeTwo
	exercise: ordering
	exercise: conditional signal in produce?

	Anderson-Dahlin complaint about semaphores
	relating monitors and semaphores
	implementing monitors with semaphores
	implementing semaphores with monitors

	aside: binary semaphores
	counting to binary semaphores

	semaphore gate pattern

