
1

putting it all together (1)
1. connect to local wifi network

a. ask local network for configuration — DHCP
a. find out MAC addresses on local network

2. open http://foo.com/bar in web browser

a. lookup foo.com — DNS
b. start connection to foo.com + correct port
c. translate URL into HTTP message + read response

2

putting it all together (1)
1. connect to local wifi network

a. ask local network for configuration — DHCP
a. find out MAC addresses on local network

2. open http://foo.com/bar in web browser

a. lookup foo.com — DNS
b. start connection to foo.com + correct port
c. translate URL into HTTP message + read response

2

putting it all together (1)
1. connect to local wifi network

a. ask local network for configuration — DHCP
a. find out MAC addresses on local network

2. open http://foo.com/bar in web browser
a. lookup foo.com — DNS
b. start connection to foo.com + correct port
c. translate URL into HTTP message + read response

2

putting it all together (2)
1. connect to local wifi network

a. ask local network for configuration

(DHCP) us -> all on local network: give me an address

(DHCP) local router -> us: use the following:
your IP 192.0.2.43
local network 192.0.2.0 through 192.0.2.255
gateway to other networks 192.0.2.1
DNS server 198.51.100.34
valid for 8 hours (ask later to renew)

3

putting it all together (2)
1. connect to local wifi network

a. ask local network for configuration

(DHCP) us -> all on local network: give me an address

(DHCP) local router -> us: use the following:
your IP 192.0.2.43
local network 192.0.2.0 through 192.0.2.255
gateway to other networks 192.0.2.1
DNS server 198.51.100.34
valid for 8 hours (ask later to renew)

3

putting it all together (3)
1. connect to local wifi network

b. find out MAC addresses on local network

us -> all local: who has 192.0.2.1 (geteway’s IP address)?

gateway -> us: I am 192.0.2.1, my MAC address is
00:00:5E:00:53:03

4

putting it all together (3)
1. connect to local wifi network

b. find out MAC addresses on local network

us -> all local: who has 192.0.2.1 (geteway’s IP address)?

gateway -> us: I am 192.0.2.1, my MAC address is
00:00:5E:00:53:03

4

putting it all together (4a)
2. open http://foo.com/bar in web browser

a. lookup foo.com

IP packet

UDP packet

from: (us) | to: (gateway) 00:00:5E:00:53:03

from: (us) 192.0.2.24 | to: (DNS server) 198.51.100.34

to port: 53 (DNS) | from port: …| message: foo.com address = ???

wifi frame

copied + forwarded
by several routers
to get to DNS server

assumption here: our machine’s IP is global one
often, instead private — if so
one router will “translate” to public one
(table of public IP+port <-> private IP+port in use)

5

putting it all together (4a)
2. open http://foo.com/bar in web browser

a. lookup foo.com

IP packet

UDP packet

from: (us) | to: (gateway) 00:00:5E:00:53:03

from: (us) 192.0.2.24 | to: (DNS server) 198.51.100.34

to port: 53 (DNS) | from port: …| message: foo.com address = ???

wifi frame

copied + forwarded
by several routers
to get to DNS server

assumption here: our machine’s IP is global one
often, instead private — if so
one router will “translate” to public one
(table of public IP+port <-> private IP+port in use)

5

putting it all together (4a)
2. open http://foo.com/bar in web browser

a. lookup foo.com

IP packet

UDP packet

from: (us) | to: (gateway) 00:00:5E:00:53:03

from: (us) 192.0.2.24 | to: (DNS server) 198.51.100.34

to port: 53 (DNS) | from port: …| message: foo.com address = ???

wifi frame
copied + forwarded
by several routers
to get to DNS server

assumption here: our machine’s IP is global one
often, instead private — if so
one router will “translate” to public one
(table of public IP+port <-> private IP+port in use)

5

putting it all together (4a)
2. open http://foo.com/bar in web browser

a. lookup foo.com

IP packet

UDP packet

from: (us) | to: (gateway) 00:00:5E:00:53:03

from: (us) 192.0.2.24 | to: (DNS server) 198.51.100.34

to port: 53 (DNS) | from port: …| message: foo.com address = ???

wifi frame

copied + forwarded
by several routers
to get to DNS server

assumption here: our machine’s IP is global one
often, instead private — if so
one router will “translate” to public one
(table of public IP+port <-> private IP+port in use)

5

putting it all together (4c)
2. open http://foo.com/bar in web browser

a. lookup foo.com

ISP’s DNS server receives request

either sends back cached response (if recent, valid one)

or looks up in hierarchy of DNS servers
ISP server -> root server: who is foo.com
root server -> ISP server: try .com servers at 200.4.3.2
ISP server -> .com servers: …
…

6

putting it all together (4c)
2. open http://foo.com/bar in web browser

a. lookup foo.com

ISP’s DNS server receives request

either sends back cached response (if recent, valid one)

or looks up in hierarchy of DNS servers
ISP server -> root server: who is foo.com
root server -> ISP server: try .com servers at 200.4.3.2
ISP server -> .com servers: …
…

6

putting it all together (5)
2. open http://foo.com/bar in web browser

b. start connection to foo.com + correct port

web browser creates socket, asks to connect to foo.com

In OS:
source port destination IP dest port program/pid/fd
… … … …
(OS assigned) 203.0.113.44 (foo.com) 80 (http) browser/705/41
… … … …

OS sends message (via multiple routers) to start connection

7

putting it all together (5)
2. open http://foo.com/bar in web browser

b. start connection to foo.com + correct port

web browser creates socket, asks to connect to foo.com

In OS:
source port destination IP dest port program/pid/fd
… … … …
(OS assigned) 203.0.113.44 (foo.com) 80 (http) browser/705/41
… … … …

OS sends message (via multiple routers) to start connection

7

putting it all together (6)
2. open http://foo.com/bar in web browser

c. translate URL to HTTP message + read response

browser: write(fd, "GET /bar HTTP/1.1…", …)

browser: read response

message is split into multiple chunks

(and forwarded through gateway)

acknowledgments, resending, etc. done by OSes at both ends

8

putting it all together (6)
2. open http://foo.com/bar in web browser

c. translate URL to HTTP message + read response

browser: write(fd, "GET /bar HTTP/1.1…", …)

browser: read response

message is split into multiple chunks
(and forwarded through gateway)

acknowledgments, resending, etc. done by OSes at both ends
8

last time (1)
autoconfiguration (DHCP)

ask on local network for configuration

IP to MAC address mapping (ARP / ND)
network configuration indicates which IPs are local
identifies “gateway” to non-local networks
ask everyone on local network: what MAC address for this IP?

DNS (domain name system)
ISP has server that does multi-step lookup + caches result
cache has timeout

network address translation
special router maps (many IP+ports) to (one IP+ports)

9

last time: secure channels
defending against eavesdropping/machine-in-middle
use shared secret = shared key(s)

need to be shared securely in advance somehow (seems hard!)

encryption: E(key, plaintext) = ciphertext; D(key, ciphertext) =
plaintext

for confidentiality: ciphertext encodes plaintext message, but…
ciphertext is useless without the key
input called plaintext; output called ciphertext

message authentication codes: MAC(key, message) = tag
“keyed checksum/hash” sometimes called a “tag”
for authenticity: can use it verify message wasn’t tampered with

10

last time: secure channels
defending against eavesdropping/machine-in-middle
use shared secret = shared key(s)

need to be shared securely in advance somehow (seems hard!)

encryption: E(key, plaintext) = ciphertext; D(key, ciphertext) =
plaintext

for confidentiality: ciphertext encodes plaintext message, but…
ciphertext is useless without the key
input called plaintext; output called ciphertext

message authentication codes: MAC(key, message) = tag
“keyed checksum/hash” sometimes called a “tag”
for authenticity: can use it verify message wasn’t tampered with

10

exercise
suppose A, B have shared keys K1, K2

assume attackers do not have keys

E/D = encrypt/decrypt function
A asks B to pay Sue $100 by sending message with these parts:

“2023-11-03: pay $100”
E(K1, “2023-11-03 Sue”)
MAC(K2, “2023-11-03 $100”)

1. can eavesdropper learn: (a) who is being paid, (b) how much?

2. can machine-in-middle change: (a) who is being paid, (b) how
much?

11

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

12

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

12

shared secrets impractical
problem: shared secrets usually aren’t practical

need secure communication before I can do secure communication?

scaling problems
millions of websites × billions of browsers = how many keys?
hard to talk to new people

12

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

13

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

13

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

13

bootstrapping keys?
will still need to have some sort of secure communication to setup!

because we need some way to know we aren’t talking to attacker

but…

can be broadcast communication
don’t need full new sets of keys for each web browser

only with smaller number of trusted authorities
don’t need to have keys for every website in advance

13

asymmetric encryption
we’ll have two functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

(public key, private key) = “key pair”

14

key pairs
‘private key’ = kept secret

usually not shared with anyone

‘public key’ = safe to give to everyone
usually some hard-to-reverse function of public key

concept will appear in some other cryptographic primitives

15

asymmetric encryption properties
functions:

encrypt: PE(public key,message) = ciphertext
decrypt: PD(private key, ciphertext) = message

should have:
knowing PE, PD, the public key, and ciphertext shouldn’t make it too
easy to find message
knowing PE, PD, the public key, ciphertext, and message shouldn’t
help in finding private key

16

secrecy properties with asymmetric
not going to be able to make things as hard as “try every possibly
private key”

but going to make it impractical

like with symmetric encryption want to prevent recovery of any info
about message

also have some other attacks to worry about:
e.g. no info about key should be revealed based on our reactions to
decrypting maliciously chosen ciphertexts

17

using asymmetric v symmetric
both:

use secret data to generate key(s)

asymmetric (AKA public-key) encryption
one “keypair” per recipient
private key kept by recipient
public key sent to all potential senders
encryption is one-way without private key

symmetric encryption
one key per (recipient + sender)
secret key kept by recipient + sender
if you can encrypt, you can decrypt

18

using?
in advance: B generates private key + public key

in advance: B sends public key to A (and maybe others) securely

A computes PE(public key, ‘The secret formula is…’) = *******

send on network:
A → B: ********

B computes PD(private key, *******) = ‘The secret formula is …’

19

digital signatures
symmetric encryption : asymetric encryption ::
message authentication codes : digital signatures

20

digital signatures
pair of functions:

sign: S(private key,message) = signature
verify: V (public key, signature,message) = 1 (“yes, correct signature”)

(public key, private key) = key pair (similar to asymmetric
encryption)

public key can be shared with everyone
knowing S, V , public key, message, signature
doesn’t make it too easy to find another message + signature so that
V (public key, other message, other signature) = 1

21

using?
in advance: A generates private key + public key

in advance: A sends public key to B (and maybe others) securely

A computes S(private key, ‘Please pay ...’) = *******

send on network:
A → B: ‘I authorize the payment’, ********

B computes V (public key, ‘Please pay ...’, *******) = 1

22

tools, but...
have building blocks, but less than straightforward to use

lots of issues from using building blocks poorly

start of art solution: formal proof sytems

23

replay attacks
A→B: Did you order lunch? [signature 1 by A]

signature 1 by A = Sign(A’s private signing key, “Did you order lunch?”)
will check with Verify(A’s public key, signature 1 by A, “Did you order
lunch?”)

B→A: Yes. [signature 1 by B]
signature 1 by B = Sign(B’s private key, “Yes.”)
will check with Verify(B’s public key, signature 1 by B, “Yes.”)

A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature N by A]

so attacker can’t manipulate/forge messages, everything’s okay?

24

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1

25

replay attacks
A→B: Did you order lunch? [signature 1 by A]
B→A: Yes. [signature 1 by B]
A→B: Vegetarian? [signature 2 by A]
B→A: No, not this time. [signature 2 by B]
…
A→B: There’s a guy at the door, says he’s here to repair the AC.
Should I let him in? [signature ? by A]
how can attacker hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “Yes.”, signature 2 from B) = 1 25

nonces (1)
one solution to replay attacks:
A→B: #1 Did you order lunch? [signature 1 from A]

signature from A = Sign(A’s private key, “#1 Did you order lunch?”)

B→A: #1 Yes. [signature 1 from B]
A→B: #2 Vegetarian? [signature 2 from A]
B→A: #2 No, not this time. [signature 2 from B]
…
A→B: #54 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? from A]

(assuming A actually checks the numbers)
26

nonces (2)
another solution to replay attacks:
B→A: [next number #91523] [signature from B]
A→B: #91523 Did you order lunch? [next number #90382]
[signature from A]
B→A: #90382 Yes. [next number #14578] [signature from B]
…
A→B: #6824 There’s a guy at the door, says he’s here to repair
the AC. Should I let him in? [next number #36129][signature from
A]

(assuming A actually checks the numbers)
27

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

28

replay attacks (alt)
M→B: #50 Did you order lunch? [signature by M]
B→M: #50 Yes. [signature intended for M by B]
A→B: #50 There’s a guy at the door, says he’s here to repair the
AC. Should I let him in? [signature ? by A]

how can M hijack the reponse to A’s inquiry?

as an attacker, I can copy/paste B’s earlier message!
just keep the same signature, so it can be verified!
Verify(B’s public key, “#50 Yes.”, signature intended for M by B) = 1

28

confusion about who’s sending?
in addition to nonces, either

write down more who is sending + other context so message can’t be
reused and/or
use unique set of keys for each principal you’re talking to

with symmetric encryption, also “reflection attacks”
A sends message to B, attacker sends A’s message back to A as if it’s
from B

29

other attacks without breaking math

30

TLS state machine attack
from https://mitls.org/pages/attacks/SMACK

protocol:
step 1: verify server identity
step 2: receive messages from server

attack:
if server sends “here’s your next message”,
instead of “here’s my identity”
then broken client ignores verifying server’s identity

31

https://mitls.org/pages/attacks/SMACK

Matrix vulnerabilties
one example from https://nebuchadnezzar-megolm.
github.io/static/paper.pdf

system for confidential multi-user chat

protocol + goals:
each device (my phone, my desktop) has public key
to talk to me, you verify one of my public keys
to add devices, my client can forward my other devices’ public keys

bug:
when receiving new keys, clients did not check who they were forwarded
from correctly

32

https://nebuchadnezzar-megolm.github.io/static/paper.pdf
https://nebuchadnezzar-megolm.github.io/static/paper.pdf

on the lab

33

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

34

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can send C:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

35

certificate authorities
instead, have public keys of trusted certificate authorities

only 10s of them, probably

websites go to certificates authorities with their public key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

these signed messages called “certificates”

36

example web certificate (1)
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

81:13:c9:49:90:8c:81:bf:94:35:22:cf:e0:25:20:33
Signature Algorithm: sha256WithRSAEncryption
Issuer:

commonName = InCommon RSA Server CA
organizationalUnitName = InCommon
organizationName = Internet2
localityName = Ann Arbor
stateOrProvinceName = MI
countryName = US

Validity
Not Before: Feb 28 00:00:00 2022 GMT
Not After : Feb 28 23:59:59 2023 GMT

Subject:
commonName = collab.its.virginia.edu
organizationalUnitName = Information Technology and Communication
organizationName = University of Virginia
stateOrProvinceName = Virginia
countryName = US

..... 37

example web certificate (1)
Certificate:

Data:
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
X509v3 extensions:

....
X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication
....

X509v3 Subject Alternative Name:
DNS:collab.its.virginia.edu
DNS:collab-prod.its.virginia.edu
DNS:collab.itc.virginia.edu

Signature Algorithm: sha256WithRSAEncryption
39:70:70:77:2d:4d:0d:0a:6d:d5:d1:f5:0e:4c:e3:56:4e:31:

.... 38

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
39

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

40

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

40

how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)
237 trust anchors
operated by 86 distinct entities

41

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

42

backup slides

43

secure communication context
“secure” communication

mostly talk about on network

between principals ≈ people/servers/programs

but same ideas apply to, e.g., messages on disk
communicating with yourself

44

A to B
running example: A talking with B

maybe sometimes also with C

attacker E — eavesdropper
passive
gets to read all messages over network

attacker M — machine-in-the-middle
active
gets to read and replace and add messages on the network

45

privileged network position
intercept radio signal?

control local wifi router?
may doesn’t just forward messages

compromise network equipment?

send packets with ‘wrong’ source address
called “spoofing”

fool DNS servers to ‘steal ’name?

fool routers to send you other’s data?

46

possible security properties? (1)
what we’ll talk about:

confidentiality — information shared only with those who should
have it

authenticity — message genuinely comes from right principal (and
not manipulated)

47

possible security properties? (2)
important ones we won’t talk about…:

repudiation — if A sends message to B, B can’t prove to C it came
from A

(takes extra effort to get along with authenticity)

forward-secrecy — if A compromised now, E can’t use that to
decode past conversations with B

anonymity — A can talk to B without B knowing who it is

…

48

link layer quality of service
if frame gets…
event on Ethernet on WiFi
collides with another detected + may resend resend
not received lose silently resent
header corrupted usually discard silently usually resend
data corrupted usually discard silently usually resend
too long not allowed to send not allowed to send
reordered (v. other messages) received out of order received out of order
destination unknown lose silently usually resend??
too much being sent discard excess? discard excess?

49

network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

50

network layer quality of service
if packet …
event on IPv4/v6
collides with another out of scope — handled by link layer
not received lost silently
header corrupted usually discarded silently
data corrupted received corrupted
too long dropped with notice or “fragmented” + recombined
reordered (v. other messages) received out of order
destination unknown usually dropped with notice
too much being sent discard excess

includes dropped by link layer
(e.g. if detected corrupted there)

50

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

51

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

52

t

53

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

53

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

54

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

55

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

56

‘connected’ UDP sockets
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
bind(fd, &my_addr, sizeof(my_addr))
struct sockaddr_in to_addr = ...;
connect(fd, &to_addr); /* set remote IP address + port */

/* doesn't actually communicate with remote address yet */
...
int count = write(fd, data, data_size);
// OR
int count = send(fd, data, data_size, 0 /* flags */);

/* single message -- sent ALL AT ONCE */

int count = read(fd, buffer, buffer_size);
// OR
int count = recv(fd, buffer, buffer_size, 0 /* flags */);

/* receives whole single message ALL AT ONCE */
57

UDP sockets on IPv4
int fd = socket(AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in my_addr= ...;
/* set local IP address + port */
if (0 != bind(fd, &my_addr, sizeof(my_addr)))

handle_error();
...
struct sockaddr_in to_addr = ...;

/* send a message to specific address */
int bytes_sent = sendto(fd, data, data_size, 0 /* flags */,

&to_addr, sizeof(to_addr));

struct sockaddr_in from_addr = ...;
/* receive a message + learn where it came from */

int bytes_recvd = recvfrom(fd, &buffer[0], buffer_size, 0,
&from_addr, sizeof(from_addr));

...

58

what about non-local machines?
when configuring network specify:

range of addresses to expect on local network
128.148.67.0-128.148.67.255 on my desktop
“netmask”

gateway machine to send to for things outside my local network
128.143.67.1 on my desktop
my desktop looks up the corresponding MAC address

59

routes on my desktop
$ /sbin/route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 128.143.67.1 0.0.0.0 UG 100 0 0 enp0s31f6
128.143.67.0 0.0.0.0 255.255.255.0 U 100 0 0 enp0s31f6
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 enp0s31f6

network configuration says:

(line 2) to get to 128.143.67.0–128.143.67.255, send directly on
local network

“genmask” is mask (for bitwise operations) to specify how big range is

(line 3) to get to 169.254.0.0–169.254.255.255, send directly on
local network
(line 1) to get anywhere else, use “gateway” 128.143.67.1 60

querying the root
$ dig +trace +all www.cs.virginia.edu
...
edu. 172800 IN NS b.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS i.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
...
b.edu-servers.net. 172800 IN A 191.33.14.30
b.edu-servers.net. 172800 IN AAAA 2001:503:231d::2:30
f.edu-servers.net. 172800 IN A 192.35.51.30
f.edu-servers.net. 172800 IN AAAA 2001:503:d414::30
...
;; Received 843 bytes from 198.97.190.53#53(h.root-servers.net) in 8 ms
...

61

querying the edu
$ dig +trace +all www.cs.virginia.edu
...
virginia.edu. 172800 IN NS nom.virginia.edu.
virginia.edu. 172800 IN NS uvaarpa.virginia.edu.
virginia.edu. 172800 IN NS eip-01-aws.net.virginia.edu.
nom.virginia.edu. 172800 IN A 128.143.107.101
uvaarpa.virginia.edu. 172800 IN A 128.143.107.117
eip-01-aws.net.virginia.edu. 172800 IN A 44.234.207.10
;; Received 165 bytes from 192.26.92.30#53(c.edu-servers.net) in 40 ms
...

62

querying virginia.edu+cs.virginia.edu
$ dig +trace +all www.cs.virginia.edu
...
cs.virginia.edu. 3600 IN NS coresrv01.cs.virginia.edu.
coresrv01.cs.virginia.edu. 3600 IN A 128.143.67.11
;; Received 116 bytes from 44.234.207.10#53(eip-01-aws.net.virginia.edu) in 72 ms

www.cs.Virginia.EDU. 172800 IN A 128.143.67.11
cs.Virginia.EDU. 172800 IN NS coresrv01.cs.Virginia.EDU.
coresrv01.cs.Virginia.EDU. 172800 IN A 128.143.67.11
;; Received 151 bytes from 128.143.67.11#53(coresrv01.cs.virginia.edu) in 4 ms

63

querying typical ISP’s resolver
$ dig www.cs.virginia.edu
...
;; ANSWER SECTION:
www.cs.Virginia.EDU. 7183 IN A 128.143.67.11
..

cached response

valid for 7183 more seconds

after that everyone needs to check again

64

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

65

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

65

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

65

connection setup: server, manual
int server_socket_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY; /* "any address I can use" */

/* or: addr.s_addr.in_addr = INADDR_LOOPBACK (127.0.0.1) */
/* or: addr.s_addr.in_addr = htonl(...); */

addr.sin_port = htons(9999); /* port number 9999 */

if (bind(server_socket_fd, &addr, sizeof(addr)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

INADDR_ANY: accept connections for any address I can!
alternative: specify specific address

bind to 127.0.0.1? only accept connections from same machine
what we recommend for FTP server assignment

choose the number of unaccepted connections

65

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

66

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

66

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

66

connection setup: client — manual addresses
int sock_fd;

server = /* code on later slide */;
sock_fd = socket(

AF_INET, /* IPv4 */
SOCK_STREAM, /* byte-oriented */
IPPROTO_TCP

);
if (sock_fd < 0) { /* handle error */ }

struct sockaddr_in addr;
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(2156872459); /* 128.143.67.11 */
addr.sin_port = htons(80); /* port 80 */
if (connect(sock_fd, (struct sockaddr*) &addr, sizeof(addr)) {

/* handle error */
}
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

specify IPv4 instead of IPv6 or local-only sockets
specify TCP (byte-oriented) instead of UDP (‘datagram’ oriented)

htonl/s = host-to-network long/short
network byte order = big endian

struct representing IPv4 address + port number
declared in <netinet/in.h>
see man 7 ip on Linux for docs

66

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

67

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

67

echo client/server
void client_for_connection(int socket_fd) {

int n; char send_buf[MAX_SIZE]; char recv_buf[MAX_SIZE];
while (prompt_for_input(send_buf, MAX_SIZE)) {

n = write(socket_fd, send_buf, strlen(send_buf));
if (n != strlen(send_buf)) {...error?...}
n = read(socket_fd, recv_buf, MAX_SIZE);
if (n <= 0) return; // error or EOF
write(STDOUT_FILENO, recv_buf, n);

}
}

void server_for_connection(int socket_fd) {
int read_count, write_count; char request_buf[MAX_SIZE];
while (1) {

read_count = read(socket_fd, request_buf, MAX_SIZE);
if (read_count <= 0) return; // error or EOF
write_count = write(socket_fd, request_buf, read_count);
if (read_count != write_count) {...error?...}

}
}

67

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

68

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

68

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

68

connection setup: server, address setup
/* example (hostname, portname) = ("127.0.0.1", "443") */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_INET; /* for IPv4 */
/* or: */ hints.ai_family = AF_INET6; /* for IPv6 */
/* or: */ hints.ai_family = AF_UNSPEC; /* I don't care */
hints.ai_flags = AI_PASSIVE;

rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

hostname could also be NULL
means “use all possible addresses”
only makes sense for servers

portname could also be NULL
means “choose a port number for me”
only makes sense for servers

AI_PASSIVE: “I’m going to use bind”

68

connection setup: server, addrinfo
struct addrinfo *server;
... getaddrinfo(...) ...

int server_socket_fd = socket(
server−>ai_family,
server−>ai_sockttype,
server−>ai_protocol

);

if (bind(server_socket_fd, ai−>ai_addr, ai−>ai_addr_len)) < 0) {
/* handle error */

}
listen(server_socket_fd, MAX_NUM_WAITING);
...
int socket_fd = accept(server_socket_fd, NULL);

69

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

70

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

70

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

70

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

70

connection setup: client, using addrinfo
int sock_fd;
struct addrinfo *server = /* code on next slide */;

sock_fd = socket(
server−>ai_family,
// ai_family = AF_INET (IPv4) or AF_INET6 (IPv6) or ...
server−>ai_socktype,
// ai_socktype = SOCK_STREAM (bytes) or ...
server−>ai_prototcol
// ai_protocol = IPPROTO_TCP or ...

);
if (sock_fd < 0) { /* handle error */ }
if (connect(sock_fd, server−>ai_addr, server−>ai_addrlen) < 0) {

/* handle error */
}
freeaddrinfo(server);
DoClientStuff(sock_fd); /* read and write from sock_fd */
close(sock_fd);

addrinfo contains all information needed to setup socket
set by getaddrinfo function (next slide)
handles IPv4 and IPv6
handles DNS names, service names

ai_addr points to struct representing address
type of struct depends whether IPv6 or IPv4

since addrinfo contains pointers to dynamically allocated memory,
call this function to free everything

70

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

71

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

71

connection setup: lookup address
/* example hostname, portname = "www.cs.virginia.edu", "443" */
const char *hostname; const char *portname;
...
struct addrinfo *server;
struct addrinfo hints;
int rv;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* for IPv4 OR IPv6 */
// hints.ai_family = AF_INET4; /* for IPv4 only */

hints.ai_socktype = SOCK_STREAM; /* byte-oriented --- TCP */
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

/* eventually freeaddrinfo(result) */

NB: pass pointer to pointer to addrinfo to fill in

AF_UNSPEC: choose between IPv4 and IPv6 for me
AF_INET, AF_INET6: choose IPv4 or IPV6 respectively

71

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

72

connection setup: multiple server addresses
struct addrinfo *server;
...
rv = getaddrinfo(hostname, portname, &hints, &server);
if (rv != 0) { /* handle error */ }

for (struct addrinfo *current = server; current != NULL;
current = current−>ai_next) {

sock_fd = socket(current−>ai_family, current−>ai_socktype, current−>ai_protocol);
if (sock_fd < 0) continue;
if (connect(sock_fd, current−>ai_addr, current−>ai_addrlen) == 0) {

break;
}
close(sock_fd); // connect failed

}
freeaddrinfo(server);
DoClientStuff(sock_fd);
close(sock_fd);

addrinfo is a linked list
name can correspond to multiple addresses
example: redundant copies of web server
example: an IPv4 address and IPv6 address
example: wired + wireless connection on one machine

72

connection setup: old lookup function
/* example hostname, portnum= "www.cs.virginia.edu", 443*/
const char *hostname; int portnum;
...
struct hostent *server_ip;
server_ip = gethostbyname(hostname);

if (server_ip == NULL) { /* handle error */ }

struct sockaddr_in addr;
addr.s_addr = *(struct in_addr*) server_ip−>h_addr_list[0];
addr.sin_port = htons(portnum);
sock_fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
connect(sock_fd, &addr, sizeof(addr));
...

73

aside: on server port numbers
Unix convention: must be root to use ports 0–1023

root = superuser = ‘adminstrator user’ = what sudo does

so, for testing: probably ports > 1023

74

	network: putting it all together
	last time
	exercise
	motivation: distributing shared secrets?
	tools without shared keys
	asymmetric encryption
	digital signatures

	encryption + authentication pitfalls
	replay attacks
	other attacks

	on the lab
	certificate authorities
	backup slides
	attackers and security properties
	security properties
	link layer quality-of-service
	network layer quality-of-service

	firewalls
	DIG trace
	UDP sockets
	ARP / IPv6 ND routing
	DNS: dig +trace
	example: echo client/server
	server setup
	client setup
	read/write code

	more normal connection setup
	other connection setup options

