
1

Changelog
12 Nov 2023: cryptographic hashes: correct Hash(second message)
= H to Hash(second message) = X

2

last time
public/private key pairs

give public key to (potentially) everyone
keep private key secret (even from correspondents)
asymmetric encryption using public key
digital signature using private key

replay attacks
encrypted/signed/MAC’d/etc. messages can be used out-of-context
fix: include needed context/prevent reuse

3

anonymous feedback
‘pipeline HW link didn’t work — when will it’

should be corrected now, but marked tentative since we haven’t
covered lecture material yet

labeled due just before Thanksgiving break right now
will adjust if needed

4

TAing next semester?
Yes, I am definitely looking for TAs!

won’t make final hiring decisions about current students until after
final exam

most likely won’t reach TA hour cap

5

getting public keys?
browser talking to websites
needs public keys of every single website?

not really feasible, but…

6

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

7

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

7

certificate idea
let’s say A has B’s public key already.

if C wants B’s public key and knows A’s already:

A can generate “certificate” for B:
“B’s public key is XXX” AND
Sign(A’s private key, “B’s public key is XXX”)

B send copy of their “certificate” to C (most common idea)

if C trusts A, now C has B’s public key
if C does not trust A, well, can’t trust this either

7

certificate authorities
websites (and others) go to certificates authorities with their public
key

certificate authorities sign messages like:
“The public key for foo.com is XXX.”

signed message called certificate

send certificates to browsers to verify identity

8

example web certificate (1)
Version: 3 (0x2)
Serial Number: 7b:df:f6:ae:2e:d7:db:74:d3:c5:77:ac:bc:44:bf:1b
Signature Algorithm: sha256WithRSAEncryption
Issuer:

countryName = US
stateOrProvinceName = MI
localityName = Ann Arbor
organizationName = Internet2
organizationalUnitName = InCommon
commonName = InCommon RSA Server CA

Validity
Not Before: Apr 25 00:00:00 2023 GMT
Not After : Apr 24 23:59:59 2024 GMT

Subject:
countryName = US
stateOrProvinceName = Virginia
organizationName = University of Virginia
commonName = canvas.its.virginia.edu

....
X509v3 extensions:

....
X509v3 Subject Alternative Name: DNS:canvas.its.virginia.edu

9

example web certificate (2)
....

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:a2:fb:5a:fb:2d:d2:a7:75:7e:eb:f4:e4:d4:6c:
94:be:91:a8:6a:21:43:b2:d5:9a:48:b0:64:d9:f7:
f1:88:fa:50:cf:d0:f3:3d:8b:cc:95:f6:46:4b:42:

....
Signature Algorithm: sha256WithRSAEncryption
Signature Value:

24:3a:67:c8:0d:ef:eb:8c:eb:ba:8f:d5:11:d2:1e:ea:44:eb:
fe:af:93:7d:d9:4a:2b:44:a3:7f:47:50:aa:d1:b3:9c:a8:a8:

....

10

certificate chains
That certificate signed by “InCommon RSA Server CA”
CA = certificate authority

so their public key, comes with my OS/browser?
not exactly…

they have their own certificate signed by “USERTrust RSA
Certification Authority”
and their public key comes with your OS/browser?

(but both CAs now operated by UK-based Sectigo)
11

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…

some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

12

certificate hierarchy
USERTrust RSA
Certification Authority
originally operated by USERTrust, Inc.
acquired by Comodo, Inc (2004)
Comodo’s CA division renamed Sectigo (2018)

InCommon
RSA Server CA
operated by Sectigo
on behalf of the Internet2 (not-for-profit)

collab.its.virginia.edu… …

…

GlobalSign Root CA
operated by GlobalSign nv-sa
subsid. of GMO Internet Group since 2007

…GTS Root R1
operated by Google Trust Services LLC

GTS CA 1C3 …

www.google.com…some “trust anchors” included with browsers and OSes
(for GTS Root R1, only more recent browsers/OSes)

12

how many trust anchors?
Mozilla Firefox (as of 27 Feb 2023)

155 trust anchors
operated by 55 distinct entities

Microsoft Windows (as of 27 Feb 2023)
237 trust anchors
operated by 86 distinct entities

13

public-key infrastructure
ecosystem with certificate authorities
and certificates for everyone

called “public-key infrastructure”

several of these:
for verifying identity of websites
for verifying origin of domain name records (kind-of)
for verifying origin of applications in some OSes/app stores/etc.
for encrypted email in some organizations
…

14

exercise
exercise: how should website certificates verify identity?

15

how do certificate authorities verify
for web sites, set by CA/Browser Forum

organization of:
everyone who ships code with list of valid certificate authorities

Apple, Google, Microsoft, Mozilla, Opera, Cisco, Qihoo 360, Brave, …
certificate authorities

decide on rules (“baseline requirements”) for what CAs do

16

BR domain name identity validation
options involve CA choosing random value and:

sending it to domain contact (with domain registrar) and receive
response with it, or

observing it placed in DNS or website or sent from server in other
specific way

exercise: problems this doesn’t deal with?

17

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

18

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

18

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

18

some other things public CAs do
keep their private keys in tamper-resistant hardware
maintain publicly-accessible database of revoked certificates

some browsers check these, sometimes

certificate transparency
public logs of every certificate issued
some browsers reject non-logged certificates
so you can tell if bad certificate exists for your website

‘CAA’ records in the domain name system
can indicate which CAs are allowed to issue certificates in DNS
(but CAs apparently not required to use DNSSEC (certificate
infrastructure for signing domain name records) when looking this up)

18

motivation: summary for signature
digital signatures typically have size limit

…but we want to sign very large messages

solution: get secure “summary” of message

19

cryptographic hash
hash(M) = X

given X:
hard to find message other than by guessing

given X, M:
hard to find second message so that hash(second message) = X

example uses:
substitute for original message in digital signature
building message authentication codes

20

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

21

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

21

password hashing
cryptographic hash functions need (basically) guessing to ‘reverse’

idea: store cryptographic hash of password instead of password
attacker who gets hash doesn’t get password
but can still check entered password is correct

problem: with fast hash function, can try lots of guesses fast

fix: special slow/resource-intensive cryptograph hash functions
Argon2i
scrypt
PBKDF2

21

random numbers
want keys, etc. to be unguessable and evenly distributed

solution: random numbers
but: many random number functions are not cryptographically
secure!

example NOT SECURE: C rand(); Python’s random.random
better: Python’s secrets, os.urandom; Linux getrandom(),
/dev/urandom

extra effort to ensure not guessable
need to incorporate “entropy” from unpredictable sources

deliberately unstable circuit; exact timing of input/output; etc. 22

just asymmetric?
given public-key encryption + digital signatures…

why bother with the symmetric stuff?

symmetric stuff much faster

symmetric stuff much better at supporting larger messages

23

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

24

key agreement
problem: A has B’s public encryption key
wants to choose shared secret

some ideas:
A chooses a key, sends it encrypted to B
A sends a public key encrypted B, B chooses a key and sends it back

alternate model:
both sides generate random values
derive public-key like “key shares” from values
use math to combine “key shares”
kinda like A + B both sending each other public encryption keys

24

Diffie-Hellman key agreement (2)
A and B want to agree on shared secret

A chooses random value Y

A sends public value derived from Y (“key share”)

B chooses random value Z

B sends public value derived from Z (“key share”)

A combines Y with public value from B to get number
B combines Z with public value from A to get number

and b/c of math chosen, both get same number
25

Diffie-Hellman key agreement (1)
math requirement:

some f , so f(f(X, Y), Z) = f(f(X, Z), Y)
(that’s hard to invert, etc.)

choose X in advance and:
A randomly chooses Y B randomly chooses Z
A sends f(X, Y) to B B sends f(X, Z) to A
A computes f(f(X, Z), Y) B computes f(f(X, Y), Z)

26

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

typical TLS handshake

client server

ClientHello,KeyShare

ServerHello,KeyShare

Certificate,CertificateVerify

Finished

Finished

KeyShare = key parts for key exchange

Certificate = certificate (“foo.com’s public key is X” + CA signature)
CertificateVerify = Sign(foo.com’s private key, server’s key share)

MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)
MAC(key made from key shares, Hash(everything so far))
(purpose: tie new key with rest of handshake)

27

TLS: after handshake
use key shares results to get several keys

take hash(something + shared secret) to derive each key

separate keys for each direction (server → client and vice-versa)

often separate keys for encryption and MAC

later messages use encryption + MAC + nonces

28

cryptographic tools
other file/disk encryption or email encryption often combine several
techniques like TLS

even if “only for encryption”

29

simple CPU

PC I$

+ instr
len

register
file

math

D$

read

write

30

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x900
%r10: 0x1000
%r11: 0x1100
…

0x100

0x108

8
9

0x800
0x900

0x11000x108

0x110

10 0x1000 0x2234

M[0x2234]

31

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x1100
%r10: 0x1000
%r11: 0x1100
…

0x100

0x108

8
9

0x800
0x900

0x1100

0x108

0x110

10 0x1000 0x2234

M[0x2234]

31

running instructions

PC I$

+ instr
len

register
file

math

D$

read

write

0x100: addq %r8, %r9
0x108: movq 0x1234(%r10), %r11

…
%r8: 0x800
%r9: 0x1100
%r10: 0x1000
%r11: M[0x2234]
…

0x100

0x108

8
9

0x800
0x900

0x1100

0x108

0x110

10 0x1000 0x2234

M[0x2234]

31

Human pipeline: laundry

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

32

Human pipeline: laundry

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets
32

Waste (1)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

wasted time!wasted time!

33

Waste (1)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

wasted time!wasted time!

33

Waste (2)

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

34

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

35

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

35

Latency — Time for One

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

pipelined latency (2.1 h)

colors colors colors

normal latency (1.8 h)

35

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

36

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

36

Throughput — Rate of Many

Washer

Dryer

Folding
Table

11:00 12:00 13:00 14:00

whites

whites

whites

colors

colors

colors

sheets

sheets

sheets

time between finishes (0.83 h)

1 load
0.83h = 1.2 loads/h

time between starts (0.83 h)

36

adding stages (one way)

PC I$

+ instr
len

register
file

math

D$

read

write

divide running instruction into steps
one way: fetch / decode / execute / memory / writeback

add ‘pipeline registers’ to hold values from instruction

fetch decode execute memory

writeback

37

adding stages (one way)

PC I$

+ instr
len

register
file

math

D$

read

write

divide running instruction into steps
one way: fetch / decode / execute / memory / writeback

add ‘pipeline registers’ to hold values from instruction

fetch decode execute memory

writeback

37

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writeback

cycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

running some instructions

PC I$

+ instr
len

register
file

math

D$

read

write

fetch decode execute memory

writebackcycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: xor %r12, %r13 F D E M W

0x100
(add)

0x108

8 (for add)
9 (for add)

0x108
(mov)

0x110

0x110
(xor)

10 (for mov) 0x800 (r8)
0x900 (r9)

12 (for xor)
13 (for xor)

0x1234
0x1000 (r10)

0x1100 (sum)

0x1100 (sum)

0x1200 (r12)
0x1300 (r13) 0x2234 (mov addr)

38

why registers?
example: fetch/decode

need to store current instruction somewhere …while fetching next
one

39

exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else

40

exercise: throughput/latency (1)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

suppose cycle time is 500 ps
exercise: latency of one instruction?
A. 100 ps B. 500 ps C. 2000 ps D. 2500 ps E. something else

exercise: throughput overall?
A. 1 instr/100 ps B. 1 instr/500 ps C. 1 instr/2000ps D. 1 instr/2500 ps
E. something else 40

exercise: throughput/latency (2)
cycle # 0 1 2 3 4 5 6 7 8

0x100: add %r8, %r9 F D E M W
0x108: mov 0x1234(%r10), %r11 F D E M W
0x110: … …

cycle # 0 1 2 3 4 5 6 7 8
0x100: add %r8, %r9 F1F2D1D2E1E2M1M2W1W2
0x108: mov 0x1234(%r10), %r11 F1F2D1D2E1E2M1M2W1W2
0x110: … …

double number of pipeline stages (to 10) + decrease cycle time
from 500 ps to 250 ps — throughput?
A. 1 instr/100 ps B. 1 instr/250 ps C. 1 instr/1000ps D. 1 instr/5000 ps
E. something else

41

diminishing returns: register delays
logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

50 ps

60 ps
per cycle

10 ps

logic (2/2)

50 ps 10 ps

logic (1/3)

33 ps

43 ps
per cycle

10 ps

logic (2/3)

33 ps 10 ps

logic (3/3)

33 ps 10 ps
...

1 ps

11 ps
per cycle

10 ps 1 ps 10 ps 1 ps 10 ps 1 ps 10 ps

…
43

diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

44

diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

register delay

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

44

diminishing returns: register delays

2 4 6 8 10 12 140
20
40
60
80

100
120

register delay

1.83x speedup

1.02x speedup

number of stages

tim
e

pe
rc

om
pl

et
io

n
(p

s)

44

diminishing returns: register delays

2 4 6 8 10 12 140

20

40

60

80

100

1.83x throughput

1.02x throughput

number of stages

th
ro

ug
hp

ut
(o

ps
/n

s)

45

diminishing returns: register delays

2 4 6 8 10 12 140

20

40

60

80

100

1.83x throughput

1.02x throughput

max. rate of register updates

number of stages

th
ro

ug
hp

ut
(o

ps
/n

s)

45

diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... 46

diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... 46

diminishing returns: uneven split
Can we split up some logic (e.g. adder) arbitrarily?
Probably not...

logic (all)

100 ps

110 ps
per cycle

10 ps

logic (1/2)

60 ps

70 ps
per cycle

10 ps

logic (2/2)

45 ps 10 ps

logic
(1/3)

40 ps

50 ps
per cycle

10 ps

logic
(2/3)

40 ps 10 ps

logic
(3/3)

30 ps 10 ps
... 46

backup slides

47

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y

PE(public key, message) =
generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

48

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, …

48

key agreement and asym. encryption
can construct public-key encryption from key agreeement

private key: generated random value Y
public key: key share generated from that Y
PE(public key, message) =

generate random value Z
combine with public key to get shared secret
use symmetric encryption + MAC using shared secret as keys
output: (key share generated from Z) (sym. encrypted data) (mac tag)

PD(private key, message) =
extract (key share generated from Z)
combine with private key to get shared secret, … 48

random numbers
need a lot of keys that no one else knows

common task: choose a random number

question: what does random mean here?

49

cryptographically secure random numbers
security properties we might want for random numbers:

attacker cannot guess (part of) number better than chance

knowing prior ‘random’ numbers shouldn’t help predict next
‘random’ numbers

compromising machine now shouldn’t reveal older random numbers

50

exercise: how to generate?

51

/dev/urandom
Linux kernel random number generator

collects “entropy” from hard-to-predict events
e.g. exact timing of I/O interrupts
e.g. some processor’s built-in random number circuit

turned into as many random bytes as you want

52

turning ‘entropy’ into random bytes
lots of ways to do this; one (rough/incomplete) idea:

internal variable state

to add ‘entropy’
state ← SecureHash(state + entropy)

to extract value:
random bytes ← SecureHash(1 + state)
give bytes that can’t be reversed to compute state

state ← SecureHash(2 + state)
change state so attacker can’t take us back to old state if compromised

53

things modern TLS usually does
(not all these properties provided by all TLS versions and modes)

confidentiality/authenticity
server = one ID’d by certificate
client = same throughout whole connection

forward secrecy
can’t decrypt old conversations (data for KeyShares is temporary)

fast
most communication done with more efficient symmetric ciphers
1 set of messages back and forth to setup connection

54

denial of service (1)
so far: worried about network attacker disrupting
confidentiality/authenticity

what if we’re just worried about just breaking things

well, if they control network, nothing we can do…

but often worried about less

55

denial of service (2)
if you just want to inconvenience…

attacker just sends lots of stuff to my server

my server becomes overloaded?

my network becomes overloaded?

but: doesn’t this require a lot of work for attacker?

exercise: why is this often not a big obstacle

56

denial of service: asymmetry
work for attacker > work for defender

how much computation per message?
complex search query?
something that needs tons of memory?
something that needs to read tons from disk?

how much sent back per message?

resources for attacker > resources of defender

how many machines can attacker use?

57

denial of service: reflection/amplification
instead of sending messages directly…attacker can send messages
“from” you to third-party

third-party sends back replies that overwhelm network

example: short DNS query with lots of things in response

“amplification” =
third-party inadvertantly turns small attack into big one

58

firewalls
don’t want to expose network service to everyone?

solutions:
service picky about who it accepts connections from
filters in OS on machine with services
filters on router

later two called “firewalls”

59

firewall rules examples?
ALLOW tcp port 443 (https) FROM everyone

ALLOW tcp port 22 (ssh) FROM my desktop’s IP address

BLOCK tcp port 22 (ssh) FROM everyone else

ALLOW from address X to address Y

…

60

network security summary (1)
communicating securely with math

secret value (shared key, public key) that attacker can’t have
symmetric: shared keys used for (de)encryption + auth/verify; fast
asymmetric: public key used by any for encrypt + verify; slower
asymmetric: private key used by holder for decrypt + sign; slower

protocol attacks — repurposing encrypt/signed/etc. messages

certificates — verifiable forwarded public keys

key agreement — for generated shared-secret “in public”
publish key shares from private data
combine private data with key share for shared secret

61

network security summary (2)
TLS: combine all cryptography stuff to make “secure channel”

denial-of-service — attacker just disrupts/overloads (not subtle)

firewalls

62

exercise: forwarding paths (2)
cycle # 0 1 2 3 4 5 6 7 8

addq %r8, %r9
subq %r8, %r9
ret (goes to andq)
andq %r10, %r9

in subq, %r8 is addq.
in subq, %r9 is addq.
in andq, %r9 is subq.
in andq, %r9 is addq.

A: not forwarded from
B-D: forwarded to decode from {execute,memory,writeback} stage of 63

	certificate authorities
	how certificates verified

	cryptographic hashes
	password hashing

	aside: random numbers
	key agreement
	putting it together: TLS
	handshake
	after handshake

	aside: other crypto tools
	review: single-cycle proccesor
	pipelining idea
	laundry idea
	applying to single-cycle processor
	exercise: throughput/latency
	slowest stage matters

	backup slides
	aside: key agreement to public key encrypt

	random numbers
	TLS properties
	misc. security issues
	denial of service
	firewalls

	summary
	alt exercise

