
1

last time (1)
multiple issue start multiple instructions at a time

out-of-order run instructions as operands ready

OOO pipeline:
in-order beginning: fetch / decode / rename → instruction queue
out-of-order: instruction queue → issue/reg read / execute / writeback
in-order end: commit (aka retire)

2

last time (2)
register renaming

multiple versions of architectural register values
keep each version in separate physical registrer
new register for each change in value
reuse registers when instructions committed

instruction issuing
for each physical register: ‘is it ready?’
varied execution units (ALUs, load/store, etc.)
issue instructions when inputs ready + execution unit ready

3

quiz Q1
longest stage work + register delay = 400ps

4

quiz Q2
movq 0x1234(%r8), %r9 F D E1 E2 M1 M2 W
addq %r9, %r10 F D D D D E1 E2 M1 M2 W

1 2 3 4

5

quiz Q3
addq %r8, %r9 F D E1 E2 M1 M2 W

^-- [R9 computed]
v-- [R9 read]

xorq %r9, %r10 F D D E1 E2 M1 M2 W
subq %r9, %r11 F F D E1 E2 M1 M2 W

6

quiz Q4
“a forwarding” was supposed to be “and forwarding”

since 1 billion instructions can time to “ramp up” pipeline

with no stalling, 1 instruction finishes every cycle

1 cycle per instruction PLUS
10% take an extra cycle
5% take two extra cycles
2% take four extra cycles

(1 + (10% + 5% + 2%)) times cycle time per instruction

7

quiz Q5
T = taken; N = not taken

inner jump: TNTNTN
first time: predicted N (wrong)
next time: same as previous (wrong)

outer jump: TTN
first time: predicted N (wrong)
next time: predicted T (correct!)
next time: predicted T (wrong)

8

quiz Q6
addq %r9, %r10
movq 0(%r13), %r9
subq %r9, %r11
if old %r9 or %r10 slow to compute,
but %r13 and %r11 available quickly
then subq will be ready before addq

9

anonymous feedback (1)
Qs about OOO homework:

Part 2: data cache can begin new memory instruction when
previous instr. at Stage 2?

yes — pipelined data cache that can do1 access/cycle throughput

Part 3: we assume that the value of registers x01 through x15 are
available?

assume no shortage of available physical registers to cause stalls
the questions for part 3 are showing you architectural (pre-renaming
regs)

10

register renaming: missing pieces
what about “hidden” inputs like %rsp, condition codes?
one solution: translate to intructions with additional register
parameters

making %rsp explicit parameter
turning hidden condition codes into operands!

bonus: can also translate complex instructions to simpler ones
popq %rax addq $8, %rsp

movq 8(%rsp), %rax
addq $8, %x17 → %x18
movq 8(%x04) → %x19

cmpq %rax, %rbx
jle foo

cmpq %rax, %rbx, %CC
jle %CC, foo

cmpq %x01, %x04 → %x17
jle %x17, foo

11

OOO limitations
can’t always find instructions to run

plenty of instructions, but all depend on unfinished ones
programmer can adjust program to help this

need to track all uncommitted instructions
can only go so far ahead
e.g. Intel Skylake: 224-entry reorder buffer, 168 physical registers

branch misprediction has a big cost (relative to pipelined)
e.g. Intel Skylake: up to approx. 16 cycles (v. 2 for simple pipelined
CPU)

12

OOO limitations
can’t always find instructions to run

plenty of instructions, but all depend on unfinished ones
programmer can adjust program to help this

need to track all uncommitted instructions
can only go so far ahead
e.g. Intel Skylake: 224-entry reorder buffer, 168 physical registers

branch misprediction has a big cost (relative to pipelined)
e.g. Intel Skylake: up to approx. 16 cycles (v. 2 for simple pipelined
CPU)

12

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

13

some performance examples
example1:

movq $10000000000, %rax
loop1:

addq %rbx, %rcx
decq %rax
jge loop1
ret

about 30B instructions
my desktop: approx 2.65 sec

example2:
movq $10000000000, %rax

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2
ret

about 40B instructions
my desktop: approx 2.65 sec

13

data flow model and limits (1)
%rcx

+

+

+

+

%r9

+

+

+

+

%rax

- 1

- 1

- 1

- 1

%rcx (final) %r9 (final)

%rbx %r8

>0?

>0?

>0?

>0?

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2

each yellow box =
instruction

arrows = dependences

instructions only executed
when dependencies ready

14

data flow model and limits (1)
%rcx

+

+

+

+

%r9

+

+

+

+

%rax

- 1

- 1

- 1

- 1

%rcx (final) %r9 (final)

%rbx %r8

>0?

>0?

>0?

>0?

loop2:
addq %rbx, %rcx
addq %r8, %r9
decq %rax
jge loop2

each yellow box =
instruction

arrows = dependences

instructions only executed
when dependencies ready

14

reassociation
with pipelined, 5-cycle latency multiplier; how long does each take
to compute?

imulq %rbx, %rax
imulq %rcx, %rax
imulq %rdx, %rax

((a × b) × c) × d

%rax %rbx %rcx %rdx

×
×

×

imulq %rbx, %rax
imulq %rcx, %rdx
imulq %rdx, %rax

(a × b) × (c × d)

%rax %rbx %rcx %rdx

× ×
×

15
cycles

11
cycles

15

reassociation
with pipelined, 5-cycle latency multiplier; how long does each take
to compute?

imulq %rbx, %rax
imulq %rcx, %rax
imulq %rdx, %rax

((a × b) × c) × d

%rax %rbx %rcx %rdx

×
×

×

imulq %rbx, %rax
imulq %rcx, %rdx
imulq %rdx, %rax

(a × b) × (c × d)

%rax %rbx %rcx %rdx

× ×
×

15
cycles

11
cycles

15

reassociation
with pipelined, 5-cycle latency multiplier; how long does each take
to compute?

imulq %rbx, %rax
imulq %rcx, %rax
imulq %rdx, %rax

((a × b) × c) × d

%rax %rbx %rcx %rdx

×
×

×

imulq %rbx, %rax
imulq %rcx, %rdx
imulq %rdx, %rax

(a × b) × (c × d)

%rax %rbx %rcx %rdx

× ×
×

15
cycles

11
cycles

15

reassociation
with pipelined, 5-cycle latency multiplier; how long does each take
to compute?

imulq %rbx, %rax
imulq %rcx, %rax
imulq %rdx, %rax

((a × b) × c) × d

%rax %rbx %rcx %rdx

×
×

×

imulq %rbx, %rax
imulq %rcx, %rdx
imulq %rdx, %rax

(a × b) × (c × d)

%rax %rbx %rcx %rdx

× ×
×

15
cycles

11
cycles

15

reassociation
with pipelined, 5-cycle latency multiplier; how long does each take
to compute?

imulq %rbx, %rax
imulq %rcx, %rax
imulq %rdx, %rax

((a × b) × c) × d

%rax %rbx %rcx %rdx

×
×

×

imulq %rbx, %rax
imulq %rcx, %rdx
imulq %rdx, %rax

(a × b) × (c × d)

%rax %rbx %rcx %rdx

× ×
×

15
cycles

11
cycles

15

Intel Skylake OOO design
2015 Intel design — codename ‘Skylake’
94-entry instruction queue-equivalent
168 physical integer registers
168 physical floating point registers
4 ALU functional units

but some can handle more/different types of operations than others

2 load functional units
but pipelined: supports multiple pending cache misses in parallel

1 store functional unit
224-entry reorder buffer

determines how far ahead branch mispredictions, etc. can happen
16

check_passphrase
int check_passphrase(const char *versus) {

int i = 0;
while (passphrase[i] == versus[i] &&

passphrase[i]) {
i += 1;

}
return (passphrase[i] == versus[i]);

}

number of iterations = number matching characters

leaks information about passphrase, oops!

17

exploiting check_passphrase (1)
guess measured time
aaaa 100 ± 5
baaa 103 ± 4
caaa 102 ± 6
daaa 111 ± 5
eaaa 99 ± 6
faaa 101 ± 7
gaaa 104 ± 4
… …

18

exploiting check_passphrase (2)
guess measured time
daaa 102 ± 5
dbaa 99 ± 4
dcaa 104 ± 4
ddaa 100 ± 6
deaa 102 ± 4
dfaa 109 ± 7
dgaa 103 ± 4
… …

19

timing and cryptography
lots of asymmetric cryptography uses big-integer math

example: multiplying 500+ bit numbers together

how do you implement that?

20

big integer multiplcation
say we have two 64-bit integers x, y

and want to 128-bit product, but our multiply instruction only does
64-bit products

one way to multiply:

divide x, y into 32-bit parts: x = x1 · 232 + x0 and y = y1 · 232 + y0

then xy = x1y1264 + x1y0 · 232 + x0y1 · 232 + x0y0

can extend this idea to arbitrarily large numbers
number of smaller multiplies depends on size of numbers!

21

big integer multiplcation
say we have two 64-bit integers x, y

and want to 128-bit product, but our multiply instruction only does
64-bit products

one way to multiply:

divide x, y into 32-bit parts: x = x1 · 232 + x0 and y = y1 · 232 + y0

then xy = x1y1264 + x1y0 · 232 + x0y1 · 232 + x0y0

can extend this idea to arbitrarily large numbers
number of smaller multiplies depends on size of numbers!

21

big integers and cryptography
naive multiplication idea:

number of steps depends on size of numbers

problem: sometimes the value of the number is a secret
e.g. part of the private key

oops! revealed through timing

22

big integer timing attacks in practice (1)
early versions of OpenSSL (TLS implementation)had timing attack

Brumley and Boneh, “Remote Timing Attacks are Practical” (Usenix
Security ’03)

attacker could figure out bits of private key from timing

why? variable-time mulitplication and modulus operations
got faster/slower depending on how input was related to private key

23

big integer timing attacks in practice (2)

Figure 3a from Brumley and Boneh, “Remote Timing Attacks are Practical” 24

browsers and website leakage
web browsers run code from untrusted webpages

one goal: can’t tell what other webpages you visit

25

some webpage leakage (1)
…as you can see here, here, and here …

convenient feature 1: browser marks visited links
<script>
var the_color = window.getComputedStyle(

document.querySelector('a[href=~"foo.com"]')
).color
if (color == ...) { ... }
</script>

convenient feature 2: scripts can query current color of something

fix 1: getComputedStyle lies about the color
fix 2: limited styling options for visited links

26

some webpage leakage (1)
…as you can see here, here, and here …

convenient feature 1: browser marks visited links
<script>
var the_color = window.getComputedStyle(

document.querySelector('a[href=~"foo.com"]')
).color
if (color == ...) { ... }
</script>

convenient feature 2: scripts can query current color of something
fix 1: getComputedStyle lies about the color
fix 2: limited styling options for visited links

26

some webpage leakage (2)
one idea: script in webpage times loop that writes big array

variation in timing depends on other things running on machine

turns out, other webpages
create distinct “signatures”
Figure from Cook et al, “There’s Always a Bigger Fish: Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack” (ISCA ’22)

27

some webpage leakage (2)
one idea: script in webpage times loop that writes big array

variation in timing depends on other things running on machine
turns out, other webpages
create distinct “signatures”
Figure from Cook et al, “There’s Always a Bigger Fish: Clarifying Analysis of a
Machine-Learning-Assisted Side-Channel Attack” (ISCA ’22)

27

inferring cache accesses (1)
suppose I time accesses to array of chars:

reading array[0]: 3 cycles
reading array[64]: 4 cycles
reading array[128]: 4 cycles
reading array[192]: 20 cycles
reading array[256]: 4 cycles
reading array[288]: 4 cycles
…

what could cause this difference?
array[192] not in some cache, but others were

28

inferring cache accesses (2)
some psuedocode:
char array[CACHE_SIZE];
AccessAllOf(array);
*other_address += 1;
TimeAccessingArray();

suppose during these accesses I discover that array[128] is
slower to access
probably because *other_address loaded into cache + evicted
it
what do we know about other_address? (select all that apply)
A. same cache tag B. same cache index C. same cache offset
D. diff. cache tag E. diff. cache index F. diff. cache offset

29

some complications
caches often use physical, not virtual addresses

(and need to know about physical address to compare index bits)
(but can infer physical addresses with measurements/asking OS)
(and often OS allocates contiguous physical addresses esp. w/‘large
pages’)

storing/processing timings evicts things in the cache
(but can compare timing with/without access of interest to check for
this)

processor “pre-fetching” may load things into cache before access
is timed

(but can arrange accesses to avoid triggering prefetcher
and make sure to measure with memory barriers)

some L3 caches use a simple hash function to select index instead
of index bits

30

exercise: inferring cache accesses (1)
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer += 1;
}
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

suppose pointer is 0x1000188
and cache (of interest) is direct-mapped, 32768 (215) byte, 64-byte
blocks
what array index should we check?

31

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
31

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer = 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) { /* pointer accessed */ }

215 byte direct mapped cache, 64 = 26 byte blocks

9 index bits, 6 offset bits

0x1000188: …0000 0001 1000 1000

array[0] starts at multiple of cache size — index 0, offset 0

to get index 6, offset 0 array[0b1 1000 0000] = array[0x180]
31

aside
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer += 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

will this detect when pointer accessed? yes

will this detect if mystery is true? not quite

…because branch prediction could started cache access

32

exercise: inferring cache accesses (2)
char *other_array = ...;
char *array;
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) {
/* found something interesting */

}
}

other_array at 0x200400, and interesting index is i=0x800, then
what was mystery?

33

solution
array = AllocateAlignedPhysicalMemory(CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) { ... }
}

at i=0x800: …0000 1000 0000 0000 (cache index = 0x20)

other_array at 0x200400

Q: 0x200400 + X has cache index 0x20?
0x200400 …0 000 0100 00 00 0000
+ X …? 000 0100 00 ?? ????
0x200400+X …? 000 1000 00 ?? ????

33

exercise: inferring cache accesses (2)
char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {

*pointer = 1;
}
if (TimeAccessTo(&array[index1]) > THRESHOLD ||

TimeAccessTo(&array[index2]) > THRESHOLD) {
/* pointer accessed */

}

pointer is 0x1000188

cache is 2-way, 32768 (215) byte, 64-byte blocks, ???? replacement

what array indexes should we check?
34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time

new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time

new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

an OOO pipeline

reorder
buffer

instr.
cache

branch
predict

decode

more
branch
predict

rename
and

dispatch

instr.
queue(s)

issue
and

register
read
or

forward

register
file

reg.
ready
info

ALU
1

ALU
2

ALU
3

pt 1

ALU
3

pt 2

load
store

write
back commit

branch prediction needs to happen before instructions decoded
done with cache-like tables of information about recent branches

register renaming done here
stage needs to keep mapping from architectural to physical names

instruction queue holds pending renamed instructions
combined with register-ready info to issue instructions
(issue = start executing)

read from much larger register file and handle forwarding
register file: typically read 6+ registers at a time
(extra data paths wires for forwarding not shown)

many execution units actually do math or memory load/store
some may have multiple pipeline stages
some may take variable time (data cache, integer divide, …)

writeback results to physical registers
register file: typically support writing 3+ registers at a time
new commit (sometimes retire) stage finalizes instruction
figures out when physical registers can be reused again

commit stage also handles branch misprediction
reorder buffer tracks enough information to undo mispredicted instrs.

34

predicting ret: ministack of return addresses
predicting ret — ministack in processor registers

push on ministack on call; pop on ret

ministack overflows? discard oldest, mispredict it later
baz saved registers

baz return address

bar saved registers

bar return address

foo local variables

foo saved registers

foo return address

foo saved registers

stack in memory

baz return address

bar return address

foo return address

(partial?) stack
in CPU registers

35

4-entry return address stack

idx
saved
return
addresses

0 0x12345
1 0x44432
2 0x44F92
3 0x22331

4-entry return address stack in CPU

1

current
index

next prediction for ret

next saved
return address

from call
on call: increment index, save return address in that slot
on ret: read prediction from index, decrement index

36

	OOO
	complex instructions and condition codes
	OOO limits
	the data flow limit
	data flow limit
	reassociation and data flow
	real OOO sizes

	some side channel examples
	example: check_passphrase
	timing and ciphers
	example: which website

	cache side channels
	introduction: observing cache evictions
	exercise: detect this access? (DM)
	exercise: detect this access? (2-way)

