

last time

out-of-order data flow model + limits

side-channels unintentional ways code ‘leaks’ data

how long it takes
how caches are modified

correlation of side-channels with sensitive information

example: number of passphrase matches
example: size of secret-derived value in bigint multiply

inferring cache accesses from what's modified

fill cache with X [do thing] detect what's evicted from X
detects which cache sets accessed by [do thing]

exercise: inferring cache accesses (1)

char *array;
array = AllocateAlignedPhysicalMemory (CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {
*pointer += 1;
by

if (TimeAccessTo(&array[index]) > THRESHOLD) {
/* pointer accessed */
}

suppose pointer is 9x1000188

and cache (of interest) is direct-mapped, 32768 (2'°) byte, 64-byte
blocks

what array index should we check?

aside

array = AllocateAlignedPhysicalMemory (CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) { *pointer += 1; }
if (TimeAccessTo(&array[index]) > THRESHOLD) {
/* pointer accessed */
}

will this detect when pointer accessed? yes
will this detect if mystery is true? not quite

..because branch prediction could started cache access

exercise: inferring cache accesses (2)

char *other_array = ...;
char *array;
array = AllocateAlignedPhysicalMemory (CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
other_array[mystery] += 1;
for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {

if (TimeAccessTo(&array[i]) > THRESHOLD) {

/* found something interesting */
}

}

other_array at 0x200400, and interesting index is i=0x800, then
what was mystery?

exercise: inferring cache accesses (2)

char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {
*pointer = 1;
by

if (TimeAccessTo(&array[index1]) > THRESHOLD | |

TimeAccessTo(&array[index2]) > THRESHOLD) {
/* pointer accessed */

}
pointer is 0x1000188

cache is 2-way, 32768 (2'°) byte, 64-byte blocks, 77?7 replacement

what array indexes should we check?

PRIME+PROBE

name in literature: PRIME + PROBE
PRIME: fill cache (or part of it) with values
do thing that uses cache

PROBE: access those values again and see if it's slow
(one of several ways to measure how cache is used)

coined in attacks on AES encryption

example: AES (1)

from Osvik, Shamir, and Tromer, “Cache Attacks and
Countermeasures: the Case of AES" (2004)

early AES implementation used lookup tables

goal: detect index into lookup table
index depended on key + data being encrypted

tricks they did to make this work

vary data being encrypted
subtract average time to look for what changes
lots of measurements

example: AES (2)

from Osvik, Shamir, and Tromer, “Cache Attacks and Countermeasures: the Case
of AES” (2004)

° o
.
az
48
B4
a0
96

11z
128
134
160
176
182
208
224
240
256

TTTTTT
-
&

gL UL LIl

2a7 2863 273 295 a1t

Fig. 5. Prime+Probe attack using 30,000 encryption calls on a 2GHz Athlon 64, attacking Linux
2.6.11 dm-crypt. The horizontal axis is the evicted cache set (i.e., (y) plus an offset due to the
table’s location) and the vertical axis is pg. Left: raw timings (lighter is slower). Right: after
subtraction of the average timing of the cache set. The bright diagonal reveals the high nibble of
po = 0x00.

reading a value

char *array;

posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);

AccessAll0f (array);

other_array[mystery * BLOCK_SIZE] += 1;

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {
if (CheckIfSlowToAccess(&array[i])) {

}
}

with 32KB direct-mapped cache
suppose we find out that array[0x400] is slow to access
and other_array starts at address 0x100000

what was mystery?

10

revisiting an earlier example (1)

char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
LoadIntoCache(array, CACHE_SIZE);
if (mystery) {
*pointer += 1;
by

if (TimeAccessTo(&array[index]) > THRESHOLD) {

/* pointer accessed */
}

what if mystery is false but branch mispredicted?

11

revisiting an earlier example (2)
cycle#0 12 3 456 7 89 1011
movqg mystery, %rax FDRI EEEWC

test %rax, %rax F DR | E WC
jz skip (mispred.) F DR | EWC
mov pointer, %rax FDRI EEEW
mov (%rax) , %r8 F DR | EW
add $1, %r F DR

mov %r8, %rax FDR

skip: ... FDR

12

avoiding/triggering this problem

if (something false) {
access *pointer;
}

what can we do to make access more/less likely to happen?

13

reading a value without really reading it

char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAll0f (array);
if (something false) {
other_array[mystery * BLOCK_SIZE] += 1;
b

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {
if (CheckIfSlowToAccess(&array[i])) {

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

14

seeing past a segfault? (1)

Prime();

if (something false) {
triggerSegfault();
Use(*pointer);

}

Probe();

could cache access for xpointer still happen?

yes, if:
branch for if statement mispredicted, and
*pointer starts before segfault detected

15

seeing past a segfault? (2)

operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...

Prime();

if (something false) {
int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

+
Probe();

16

seeing past a segfault? (2)

operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...

Prime();

if (something false) {
int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

+
Probe();

16

seeing past a segfault? (2)

operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...

Prime();

if (something false) {
int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

+
Probe();

16

seeing past a segfault? (2)

operations in virtual memory lookup:

translate virtual to physical address
check if access is permitted by permission bits

Intel processors: looks like these were separate steps, so...

Prime();

if (something false) {
int value = ReadMemoryMarkedNonReadableInPageTable();
access other_array[value * ...];

+
Probe();

16

Meltdown

from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kernel address
// %rbx = array to load from to cause eviction
Xor %rax, %rax // rax <- 0

retry:

// rax <- memory[kernel address] (segfaults)
// but check for segfault done out-of-order on Intel
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

17

Meltdown

from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

// %rcx = kelspace out accesses by 4096

o
/7 ’°or,bX fV ensure separate cache sets and
Xor %rax, %r) s i
retry: avoid triggering prefetcher
// rax <- memory[kernel address] (segfaults)
// but check for segfault done out-of-order on Intel
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

viction

17

Meltdown

from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

oz .
// %rcx | yepeat access if zero

%rbx .
/7 °~" | apparently value of zero speculatively read
XOr ZoraX

retry: when real value not yet available
// rax <- memory[kernel address] (segfaults
// but check for segfault done out-of-order on Intel
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

on

17

Meltdown

from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

0/
// %rcx qaccess cache to allow measurement later
// %rbx

or %rax in paper with FLUSH+RELOAD instead ton
retry: of PRIME+PROBE technique

// rax <- memory[kernel address] (segfaults)
// but check for segfault done out-of-order on Intel
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

17

Meltdown

from Lipp et al, “Meltdown: Reading Kernel Memory from User Space”

segfault actually happens eventually
option 1: okay, just start a new process every time
option 2: way of suppressing exception (transactional memory support)

// rax <- memory[kernel address] (segfaults)
// but check for segfault done out-of-order on Intel
movb (%rcx), %al
// rax <- memory[kernel address] * 4096 [speculated]
shl $0xC, %rax
jz retry // not-taken branch
// access array[memory[kernel address] * 4096]
mov (%rbx, %rax), %rbx

17

Meltdown fix

HW: permissions check done with /before physical address lookup

was already done by AMD, ARM apparently?
now done by Intel

SW: separate page tables for kernel and user space
don't have sensitive kernel memory pointed to by page table
when user-mode code running
unfortunate performance problem
exceptions start with code that switches page tables

18

reading a value without really reading it

char *array;
posix_memalign(&array, CACHE_SIZE, CACHE_SIZE);
AccessAll0f (array);
if (something false) {
other_array[mystery * BLOCK_SIZE] += 1;
b

for (int i = 0; i < CACHE_SIZE; i += BLOCK_SIZE) {
if (CheckIfSlowToAccess(&array[i])) {

}
}

if branch mispredicted, cache access may still happen

can find the value of mystery

19

mistraining branch predictor?

if (something) {
CodeToRunSpeculatively()

}

how can we have ‘something’ be false, but predicted as true

run lots of times with something true

then do actually run with something false

20

contrived(?) vulnerable code (1)

suppose this C code is run with extra privileges

(e.g. in system call handler, library called from JavaScript in webpage,
etc.)

assume X chosen by attacker

(example from original Spectre paper)

if (x < arrayl_size)
y = array2larrayl[x] * 4096];

21

the out-of-bounds access (1)
char arrayl[...];

%6% secret;

9.; array2[arrayl[x] * 4096];
suppose arrayl is at Ox1000000 and

secret is at Ox103F0003;

what x do we choose to make arrayl[x] access first byte of
secret?

22

the out-of-bounds access (2)

char arrayl[...];

%6% secret;

9.; array2[arrayl[x] * 4096];

suppose our cache has 64-byte blocks and 8192 sets

and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about arrayl[x]?

23

the out-of-bounds access (2)

char arrayl[...];

%6% secret;

9.; array2[arrayl[x] * 4096];

suppose our cache has 64-byte blocks and 8192 sets

and array2[0] is stored in cache set 0

if the above evicts something in cache set 128,
then what do we know about arrayl[x]?

is 2 or 130

23

exploit with contrived(?) code

/* in kernel: */
int systemCallHandler (int x) {
if (x < arrayl_size)
y = array2[arrayl[x] * 4096];
return y;

}

/* exploiting code */

/* step 1: mistrain branch predictor */
for (a lot) {

systemCallHandler (0@ /* less than arrayl_size */);
}

/* step 2: evict from cache using misprediction */
Prime();

systemCallHandler (targetAddress - arraylAddress);
int evictedSet = ProbeAndFindEviction();

int targetValue = (evictedSet - array2StartSet) / setsPer4kK;

24

really contrived?

char *arrayl; char *array2;

if (x < arrayl_size)
y = array2[arrayl[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

25

really contrived?

char *arrayl; char *array2;

if (x < arrayl_size)
y = array2[arrayl[x] * 4096];

times 4096 shifts so we can get lower bits of target value
so all bits effect what cache block is used

int *arrayl; 1int *array2;
if (x < arrayl_size)
y = array2[arrayl[x]];

will still get upper bits of arrayl[x] (can tell from cache set)

can still read arbitrary memory!

want memory at 0x100007
upper bits of 4-byte integer at Ox3FFFE

25

bounds check in kernel

if (x < arrayl_size) {
y = array2[arrayl[x]]);
}

void SomeSystemCallHandler (int index) {
if (index > some_table_size)
return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

}

our template

actual code

26

bounds check in kernel

if (x < arrayl_size) {
y = array2[arrayl[x]]);
}

void SomeSystemCallHandler (int index) {
if (index > some_table_size)
return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

}

our template

actual code

26

bounds check in kernel

if (x < arrayl_size) {
y = array2[arrayl[x]]);
}

void SomeSystemCallHandler (int index) {
if (index > some_table_size)
return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

}

our template

actual code

26

bounds check in kernel

if (x < arrayl_size) {
y = array2[arrayl[x]]);
}

void SomeSystemCallHandler (int index) {
if (index > some_table_size)
return ERROR;
int kind = table[index];
switch (other_table[kind].foo) {

}

our template

actual code

26

privilege levels?
vulnerable code runs with higher privileges

so far: higher privileges = kernel mode

but other common cases of higher privileges

example: scripts in web browsers

27

JavaScript

JavaScript: scripts in webpages

not supposed to be able to read arbitrary memory, but...
can access arrays to examine caches

and could take advantage of some browser function being
vulnerable

28

JavaScript

JavaScript: scripts in webpages

not supposed to be able to read arbitrary memory, but...
can access arrays to examine caches

and could take advantage of some browser function being
vulnerable

or — doesn't even need browser to supply vulnerable code itself!

28

just-in-time compilation?
for performance, compiled to machine code, run in browser
not supposed to be access arbitrary browser memory

example JavaScript code from paper:

if (index < simpleByteArray.length) {
index = simpleByteArray[index | 0];
index = (((index * 4096)|0) & (32*1024*1024-1))|0;
localJunk "= probeTable[index|0]|0;

}

web page runs a lot to train branch predictor
then does run with out-of-bounds index

examines what's evicted by probeTable access

29

supplying own attack code?

JavaScript: could supply own attack code

turns out also possible with kernel mode scenario
trick: don't need to actually run code

..just need branch predictor to fetch it!

30

other misprediction
so far: talking about mispredicting direction of branch

what about mispredicting target of branch in, e.g.:

// possibly from C code like:
// (*function_pointer) () ;
jmp *%rax

// possibly from C code like:
// switch(rcx) { ... }

jmp *(%rax,%rcx,8)

31

an idea for predicting indirect jumps

for jmps like jmp *%rax predict target with cache:
bottom 12 bits of jmp address last seen target

0x0-0x7 0x200000
0x8—-0xF 0x440004
0x10-0x18 0x4CD894
0x18-0x20 0x510194
0x20-0x28 Ox4FF194
OxFF8-0xFFF 0x3F8403

Intel Haswell CPU did something similar to this
uses bits of last several jumps, not just last one

can mistrain this branch predictor

32

using mispredicted jump
1: find some kernel function with jmp *%rax

2: mistrain branch target predictor for it to jump to chosen code
use code at address that conflicts in “recent jumps cache”

3: have chosen code be attack code (e.g. array access)

either write special code OR
find suitable instructions (e.g. array access) in existing kernel code

33

Spectre variants

showed Spectre variant 1 (array bounds), 2 (indirect jump)
from original paper

other possible variations:
could cause other things to be mispredicted
prediction of where functions return to?
values instead of which code is executed?
could use side-channel other than data cache changes
instruction cache

cache of pending stores not yet committed
contention for resources on multi-threaded CPU core

branch prediction changes

34

some Linux kernel mitigations (1)

replace array[x] with
array[x & ComputeMask(x, size)]

..where ComputeMask() returns

0 if x > size
OXFFFF. .F if x < size

..and ComputeMask() does not use jumps:

mov X, %r8

mov size, %r9

cmp %r9, %r8

sbb %rax, %rax // sbb = subtract with borrow
// either 0 or -1

35

some Linux kernel mitigations (2)

for indirect branches:

with hardware help:

separate indirect (computed) branch prediction for kernel v user mode
other branch predictor changes to isolate better

without hardware help:
transform jmp * (%rax), etc. into code that
will only predicted to jump to safe locations
(by writing assembly very carefully)

36

only safe prediction
as replacement for jmp * (%rax)

code from Intel's “Retpoline: A Branch Target Injection
Mitigation”

call load_label
capture_ret_spec: /* <-—- want prediction to go here */
pause
1fence
jmp capture_ret_spec
load_label:
mov %rax, (%rsp)
ret

37

upcoming exam review

next week — final exam review

please have questions
won't have material prepared

| will cover things I'm asked about

38

backup slides

39

	exercise: detect this access? (DM)
	exercise: detect this access? (2-way)
	PRIME+PROBE, AES example
	reading a value (1)
	seeing speculation via side channels
	revising array lookup
	reading a value (2)

	meltdown
	well, what else gets speculated?
	vulnerability
	fix

	spectre
	concept: forcing branch misprediction
	contrived? vulnerable code
	array bounds check
	JavaScript exploit
	mispredicted indirect
	more variants?
	software fix

	next time
	backup slides

