
CS 1112 information sheet

1
© 2017

Doing assignments
 Normally each part of an assignment corresponds to something recently

covered in class. If this does not seem to be the case, look again.

Syntax, semantics, and style
§ A syntax rule is a requirement imposed by a programming language; e.g.,

a left parenthesis must have a matching right parenthesis.
§ A semantics rule defines how something works; e.g., the + operator

performs addition when it has numeric operands.
§ A style rule is a convention for developing code; e.g., variables names

composed of more than one word have the words separated by
underscores; e.g., snake_case.

Program execution
§ Programs are stored in files with the suffix .py.
§ Python is an interpreted language. A program is first compiled to

determine whether it is syntactically correct.
§ If a program has no syntax errors, the code is translated into bytecodes, a

lower-level instruction language.
§ An interpreter converts the bytecodes into machine instructions and runs

(executes / carries out) the instructions.

Comments
§ The # indicates the rest of the line is not a programming instruction. The

text is instead a comment documenting some aspect of the code.
§ Programs often have header comment section that identifies the purpose

of the program, the authors, and contact information.
§ A function normally begins with a comment indicating its purpose.
§ A major section of code within a function is typically preceded by a

comment indicating its task.

Whitespace
§ Whitespace between programming elements is ignored during

compilation.

§ Whitespace is used to separate program elements for increased
readability.

§ Statement lists within control constructs must be indented. The
indentation indicates that the statements are part of a decision or looping
statement. Standard indentation is 3 or 4 spaces per level. The number of
spaces must be consistent within a program element.

§ For readability, long statements (typically 72 or more characters) are
generally broken up into multiple lines. The additional lines are indented
with respect to the starting line of the statement.

§ Long statements are generally broken immediately after an operator.

Identifiers
§ Identifier is the computing term for a name.
§ An identifier must begin with a letter. Subsequent characters (if any) can

be letters or numbers. The underscore (_) is considered to be a letter.
§ Identifiers are case-dependent; e.g., count and COUNT are different

identifiers.

Reserved words
§ Reserved words cannot be used as names.
§ A keyword is a word reserved for special purposes. Keywords are case

sensitive. Python keywords include and, break, def, del, elif, else,
False, for, if, import, in, is, None, not, or, pass, print, True,
and while.

Variables
 A variable is a symbolic name for a memory location containing a

reference (think pointer) where to find a value (e.g., a number or string).
 Variable names must be identifiers.
 A variable must be initialized when it is first introduced into a program.
 The standard variable naming style rule in Python is called snake case. In

snake case a name is composed of all lowercase letters except for a
single underscore between each word in the name; e.g., peas_per_pod.

Escape sequence
 An escape sequence allows a special character to be easily represented.

CS 1112 information sheet

2
© 2017

 Some escape sequences are
 \t represents the tab character.
 \n represents the newline character.
 \\ represents the backslash character.
 \' represents the single quote character.
 \" represents the double quote character.

Types and casting
 A type is a collection of values along with the operators, functions, and

methods that manipulate the values.
 The built-in numeric types are int and float. Type int is for integer;

type float is for decimals. Built-in string type str is for character
sequences. Built-in logical type bool is for representing logical values.

 The built-in types have cast functions of the same name that produce
values of that type. The cast functions are listed below.

 int(x)

If x is a number, returns the integer gotten by dropping the fractional
part of x. If x is literal string of digits, returns the number
represented by the string.

 float(x)

If x is a number, returns the decimal equivalent of the number. If x
is literal decimal string, returns the number represented by the string.

 str(x)

Returns a text representation of x suitable for printing.
 bool(x)

Returns False if x equals False, 0, 0.0, '', "", or None;
otherwise, returns True.

Values and objects
 An explicit numeric, character string, or logical value (e.g., 19, 2.8,

'aardvark', or True) is called a literal value.
 The value of a variable is a reference to an object.
 Reserved word None indicates a no reference.
 There is a difference between uninitialized and None. The former

indicates no value as of yet; the latter indicates the no reference value.

 The dot operator (.) is the selection operator. A dot gives access to an
element of an object; e.g., s.f() is the f() method of the object
referenced by s.

Standard output
 Standard output is where program output goes by default. The default

standard output is the window running the program.
 Built-in function print() displays the values of its parameters along

with a newline character to standard output. There is a single blank
separating the values from one another.

Standard input
 Standard input is where program input comes from by default. The

default standard input is the program user.
 Built-in function input() gets the next line of data from standard input

and returns it as a string. The function can take a string as an optional
parameter. The string is displayed to standard output to prompt for user
input.

 If non-string data is wanted, use built-in cast functions int(), float(),
and bool() to convert from string data.

Built-in functions
 Besides the print(), input(), and cast functions, there are many

other handy built-in functions. Several are listed below.
 abs(x)

Returns the absolute value of x
 help(x)

Prints the help page for x.
 len(x)

Returns the length of x.
 max(x1, x2, ...)

Returns the maximum value in sequence x.
 min(x1, x2, ...)

Returns the minimum value in sequence x.
 open(f, m)

Returns a file type object for processing file name f. The type of
processing is determined by mode value m. The mode is

CS 1112 information sheet

3
© 2017

optionable. By default the mode is reading ('r'). Some of the
other modes are 'a' for appending text to the file and 'w' for
writing the file (any existing data in the file is removed).

 round(x, d)

Rounds x to d digits after the decimal point. Precision d is
optional. If no precision is given, x rounds to its nearest integer;
otherwise, it rounds to a decimal.

 sorted(x)

Returns a new sorted version of x.
 sum(x1, x2, ...)

Returns the sum of the values in sequence x.

Assignment
 The assignment operator = replaces the value of its left operand with the

value of its right operand. In an assignment, the left operand is called the
target.

 The compound operators +=, -=, *=, /=, //=, **=, and %= respectively
increment, decrement, scale, divide, divide, and modulate the target by
the value of the right operand; e.g., n += 5 increments the value of
variable n by 5.

Operators and evaluation
 The act of determining the value of an expression is called evaluation.
 When in doubt in writing an expression, use parentheses to make your

intention explicit. In fact, when even close to doubt, use parentheses.
 Python provides the standard numeric operators +, -, *, and / along with

the integer division operator //, remainder (modulus) operator %, and the
exponentiation operator **.

 Except for the division operator /, the numeric operators when given two
integer operands produce an integer result. The division operator /
always produces a decimal result.

 Except for the integer division operator //, the numeric operators when
given at least one decimal operand produce a decimal result. The integer
division operator // always produces an integer result.

 The + operator performs concatenation when both of its operands are
strings.

 In expressions composed of more than one operator, precedence and
associativity rules determine the order of operator evaluation.

 The grouping operator () has higher precedence than unary, numeric,
relational, logical, and assignment operators.

 The unary operators +, -, and ! have higher precedence than numeric,
relational, logical, and assignment operators.

 The numeric operators have precedence than relational, logical, and
assignment operators.

 The multiplicative operators *, /, //, and % have higher precedence than
additive operators +, and -.

 The relational operators <, <=, >, and >=, !=, and ==, have higher
precedence than logical and assignment operators.

 The ordering operators <, <=, >, and >= have higher precedence than
equality operators != and ==,.

 Logical operators and and or have higher precedence than assignment
operators.

 Operator and has higher precedence than operator or.
 When operators have equal precedence, associativity rules determine the

order of evaluation.
 Unary and assignment operators are evaluated right to left. Other

operators are evaluated left to right.
 If the left operand of an and operator evaluates to false, the right operand

is not evaluated – the operation must be false.
 If the left operand of an or operator evaluates to true, the right operand is

not evaluated – the operation must be true.

Equality
 The operators == and != test respectively whether two values are the

same or different.
 The operators is and is not test respectively whether two values

reference or do not reference the same object memory location.

Functions
 A function is a named piece of code that can take parameters and

produce a value.

CS 1112 information sheet

4
© 2017

 A request for a function to carry out its task is called an invocation,
calling, or execution.

 There are three kinds of functions: built-in function, module functions,
and message method functions.

 To invoke function f() from module m, the invocation has form m.f().
 A message method sends a message to its object to carry out a behavior

(action).
 Suppose object s has a message method f(). To have f() manipulate s,

the method invocation has form s.f().
 Without an object to be the target of its manipulation, message methods

do not make sense.

Strings
 Python uses class str for representing character strings.
 Strings are immutable; that is, there is no way to modify a string after it

has been created. A manipulation of a string produces a new string and
leaves the original alone.
A character string within single or double quotes is a string literal; e.g.,
x' and "x" are both literal representations of the string composed of the
character x.

 None and '' are different. The former indicates a no reference; the latter,
a string of length 0.

 'x' and x are different. The former is a literal; the latter is an identifier.
 The characters in a string are accessible by their index. The first

character has index 0, the second character has index 1, and so on.
 len(s)

Returns the length of string s.
 s.split(c)

If optional c is not present, returns the words in s as a list. If c is
present, the words are split using c as the separator.

 s.lower()
Returns a new string whose characters are the lowercase equivalents
of s.

 s.upper()
Returns a new string whose characters are the uppercase equivalents
of s.

 s. capitalize()

Returns a new string whose characters are the lowercase equivalents
of s except for the first character, which is uppercase.

 s.isalpha()
If s is empty, it returns False; otherwise, returns whether all
characters in its string are alphabetic.

 s.isdigit()
If s is empty, it returns False; otherwise, returns whether all
characters in its string are base 10 digits (i.e., 0 … 9).

 s.count(t, i, j)
Returns the number of occurrence of t in s, where the search is
limited to its slice interval [i : j]. Parameters i and j are optional.
If j is not present, n is used, where n is the length of s. If i and j are
both not present, 0 and n are used respectively for i and j.

 s.find(t, i, j)

Returns the first occurrence of t in s, where the search is limited to
its slice interval [i : j]. If there are no occurrences, returns -1.
Parameters i and j are optional. If j is not present, n is used, where
n is the length of s. If i and j are both not present, 0 and n are used
respectively for i and j.

 s.rfind(t, i, j)

Returns the last occurrence of t in s, where the search is limited to
its slice interval [i : j]. If there are no occurrences, returns -1.
Parameters i and j are optional. If j is not present, n is used, where
n is the length of s. If i and j are both not present, 0 and n are used
respectively for i and j.

 s.replace(t, u, n)

Parameter n is optional. If optional n is not present, it returns a new
copy of its string with all occurrences of t replaced by u. If n is
given, it returns a new copy with the first n occurrences of t replaced
by u.

Math functionality
 The standard module math provides functions for computing power,

exponential, logarithmic, and trigonometric functions. To make of the
library, an import statement is needed at the beginning of the program.

import math

CS 1112 information sheet

5
© 2017

Random number generation
§ Random number generators use seed values to start up their random

value sequences. By default random uses a seed value based on the
current time.

§ The difference in seed values from program run to program run causes
the generator to produced different sequences.

§ To have access to random number generation the module random is
imported.

import random

§ Module random provides a variety of ways to produce random values.
§ random.seed(s)

Initializes the random number generator. Optional parameter s is
used to configure the random number generator to a particular start
state. Parameter s can be a value of any type.This ability is useful
during program development as it allows reproducibility during
testing.

§ random.randrange(a, b)

Returns a random integer v such that a ≤ v < b.
§ random.randrange(a, b, s)

Returns a random integer v such that a ≤ v < b, and v equals a + s
* i for some integer i.

§ random.random()

Returns a random float value v such that 0.0 ≤ v < 1.0
§ random.uniform(a, b)

Returns a random float value v such that a ≤ v < b.
§ random.gauss(m, s)

Returns a normally distributed float v such that the distribution of its
possible values has mean 0 and standard deviation 1 (standard bell-
shaped curve).

§ random.choice(s)

Returns a random value from the sequence s.
§ random.shuffle(s)

Returns a random shuffling of sequence s.

URL access
 Module urllib is a package of sub-modules for working with URLs.

Our only interest is its sub-module request. To access the sub-module
you must import the sub-module.

Import random
 urllib.request.urlopen(link)

Returns a connector providing access to the URL resource (think
web page) named by string link. We call the connector a stream.

 stream.read()

If stream is a connector returned by urlopen(), the contents of
the URL resource are returned as encoded string.

 page.decode('UTF-8')

If page is encoded string, the function returns a text-based version of
page.

 Sample code segment for accessing the CS 1112 home page would be
link = 'http://www.cs.virginia.edu/~cs1112'

stream = urllib.request.urlopen(link)

page = stream.read()

text = page.decode('UTF-8')
When the segment completes, string variable text is the web page
contents.

Collections
§ An important part of a programming language is the ability to store and

manipulate collections of values.
§ A collection of values can either be ordered or unordered. An ordered

collection is a sequence of values. A sequence has a first element, second
element, and so on. A string is a sequence of characters.

§ Beside strings, Python has other types for representing sequences. They
include ranges and lists.

§ The number of elements in collection c can be gotten through len(c).
§ The element of maximum value in collection c can be gotten through

max(c).
§ The element of minimum value in collection c can be gotten through

min(c).

CS 1112 information sheet

6
© 2017

§ The number of elements in collection c equal to x can be gotten through
count(c, x).

Ranges
§ A range is a consecutive sequence of integers.
§ Built-in function range() can produce new ranges. Its usage has form

range(a, b), where a is optional (if a is not provided, 0 is used).
§ The range produced by range(a, b) corresponds to the sequence of

values a, a+1, ... b-1.
§ The range produced by range(b) corresponds to the sequence of

values 0, 1, ... b-1.
§ Ranges are immutable. Once built, a range cannot be modified.

Lists
§ Unlike ranges, lists are mutable — their elements can be modified, new

elements can be added, and existing elements can be removed, they can
also be sliced and subscripted.

§ The empty list literal is [].
§ If s is a list then len(s) is the number of elements in s.
§ If s is a list then del s[a : b] removes the elements from s with indices

a through b-1.
§ The + operator can combine two lists to produce a new list. If s and t are

lists, then u = s + t makes u a new list. The number of elements in u is
len(s) + len(t). List u corresponds to the list of values in s
concatenated with the list of values in t.

§ The append() method can be used to add a new element to the end of a
list. If s is a list, the s.append(x) grows the size of s by one, where x
is now the last value in s.

§ The count() method can determine a number of occurrences. If s is a
list, then s.count(x) is the number of occurrences of x in s.

§ The insert() method can be used to insert a new element into a list, If
s is a list, then s.insert(a, x) grows the size of s by one by inserting
x into s at index a.

§ Method index(x, i, j) determines the index of the first occurrence of
x in its collection among the indices i ... j-1. Parameter i is optional. If

not supplied, 0 is used. Parameter j is also optional. If not supplied, then
n is used, where n is the number of elements in the collection.

§ The in and not in operators determine whether values are or are not
part of a collection. If s is a collection, then x in s is true when x is one
of the elements of s, and x not is is true when x is not one of the
elements of s.

§ The remove() method can be used to remove a value from a list. If s is
a list, then s.remove(x) removes the first occurrence of x from s.

§ The reverse() method can be used to reverse values in a list. If s is a
list, then s.reverse() reverses the order of element values in s.

§ The pop() can be used to pop and element from a list. If s is a list, then
s.pop(i) returns the element with index i from its list and also
removes it from the list. Parameter i is optional, if it is not supplied n-1
is used, where n is the number of elements in its list.

§ Method sort()puts its list into sorted order. If s is a list, then
s.sort() rearranges the elements of s into non-descending order.

§ Method copy() produces a copy of its list. If s is a list, then s.copy()
returns a new list, which has the same values as s.

§ Method clear() can clear out the elements of a list. If s is a list, then
s.clear() removes all elements from s.

Slicing and subscripting (also see slicing in string section)
§ A sequence can be sliced to produce a new sequence formed out of a

contiguous sub-section of the sequence.
§ An element of an ordered collection can be accessed via its index.
§ A string is a character sequence.
§ The forms sequence slicing can take are listed below.
§ s[i : j]

Returns a new slice corresponding to the subsequence of sequence s
from indices i to index j-1.

§ s[i :]

Returns a new slice corresponding to the subsequence of sequence s
from index i on

CS 1112 information sheet

7
© 2017

§ s[: j]

Returns a new slice corresponding to the subsequence of sequence s
from indices 0 to j-1.

§ s[:]

Returns a new copy of the sequence s.
§ s[i]

Returns the value at index i in sequence s. We say here that i is a
subscript.

Mappings
• The built-in type dict supports sets of mappings from one value to

another (i.e., a dictionary). In the description below, suppose d is a
dictionary.

• The empty dictionary literal is {}.
• len(d) is the number of mappings in d.
• d[k] = v sets d to have a mapping from k to v. If there was a prior

mapping from k in d, then that mapping is removed. In dictionary
parlance, there is a now a mapping from key k to value v in d.

• d[k] is the value that key k maps to in d.
• d.get(k) returns the value that key k maps to in d. If there is no

such value, returns None.
• del d[k] removes k’s mapping in d.
• (k in d) indicates whether k is one of key values in d.
• (k not in d) indicates whether k is not one of key values in d.
• d.clear() removes all mappings in d.
• d.keys() are the keys for d. There are no duplicates among the

keys.
• d.values() are the values of the keys in d. There are duplicate

values if more than one key maps to the same value.
• d.pop(k) removes k’s mapping in d and returns the value of that

mapping.
• d.popitem() removes and returns an arbitrary mapping from d.

Control constructs
§ For general problem solving a program the ability to control which

statements are executed and how often.
§ Python provides two iterative control constructs for statement repetition,

the for and while statements.
§ Python provides one conditional control construct, the if statement, for

determining whether statements should be executed at all.
§ The for, while, and if are all keywords.

For loop
 A for statement is a looping statement that iterates over a collection of

values. The collection can be a range, sequence, or set.
 A for statement has syntax

 for x in collection :
 Action

where
• The action is a statement list of at least one statement. The action is

repeated once for each value in the collection.
• Each time through the loop, variable x takes on another value of the

collection. For a range or sequence, the x values come in order.
• The action statements are indented one-level further than the start of

the for statement.
• The value of x when the loop completes is the value assigned to x for

the last iteration.
 For example, the following code segments, prints values a through b-1.

 for x in range(a , b) :
 print(x)

If statement
 An if statement is not a loop. Its action is executed once.
 The if statement uses a logical expression to determine the next action

executed by a program.
 The most common form of the if statement has syntax

if logical-expression :
 Action1

CS 1112 information sheet

8
© 2017

else :

 Action2
where
• The test expression evaluates to True or false.
• The actions are non-empty statement lists.
• The actions are indented one-level further than the start of the if

statement. The else is indented at the same level as the if.
 The statement semantics are that the test expression is evaluated. If the

expression is True, the first action executes; otherwise, the second
action executes.

 Sometimes the action to be taken by a program depends on which of
several logical expressions is True. The if statement has elif
components for such processing. The syntax here has form

if test-expression1 :
 Action1
elif test-expression2 :

 Action2
…
elif test -expressionn :

 Actionn
else :

 Actionn+1
where
• The test expression evaluate to True or false.
• The actions are non-empty statement lists.
• The actions are indented one-level further than the start of the if

statement. The elif’s and else are indented at the same level as
the if.

 The statement semantics are that test-expression1 is evaluated first. If
True, Action1 executes; otherwise, test-expression2 is evaluated. If True,
Action2 executes; otherwise, test-expression3 is evaluated, and so on. If
none of the test expressions are true, Actionn+1 executes.

 The else part of an if statement is optional.

Image
• Image is defined in the PIL module.
• In the descriptions below, suppose

o drawing is an Image.
o (x, y) is a two-tuple representation of a coordinate.
o (w, h) is a two-tuple representation of the width and height of

an Image.
o (r, g, b) is a three-tuple representation of the red, green, and

blue levels of a pixel (i.e., a color).
o fn is a string whose value is the name of a file.

• Image.new('RGB', (w, h)) returns a new Image whose dimensions
are w by h, and whose pixels are all black.

• Image.new('RGB', (w, h), (r, g, b)) returns a new Image
whose dimensions are w by h, and whose pixels are all color (r, g, b).

• drawing.size returns a two-tuple. The value of the tuple is the width
and height of drawing.

• drawing.getpixel((x, y)) returns a three-tuple. The three-tuple is
the RGB representation of the pixel at location (x, y) in drawing.

• drawing.putpixel((x, y), (r, g, b)) sets the pixel at location
(x, y) in drawing to color (r, g, b).

• drawing.save(fn, 'PNG') saves a 'PNG' representation of
drawing in the file named by string fn.

