
CS	1112	Fall	2015	Test	3	
		

Page 1 of 6	

–	

Name:	
	

E-mail	ID:	
	
	

On	my	honor,	I	pledge	that	I	have	neither	given	nor	received	help	on	this	test.	
	
Signature:	

Testing	
	

• Print	your	name,	id,	and	pledge	as	requested.		
	

• This	pledged	exam	is	closed	textbook.	The	only	device	you	may	access	during	the	test	is	your	own	laptop.	
	

• You	are	not	allowed	to	access	class	examples	or	your	own	past	assignments	during	the	test;	i.e.,	the	only	Python	
code	you	may	access	or	view	are	ones	that	you	develop	for	this	test.		

	

• The	only	windows	that	can	be	open	on	your	computer	are	PyCharm	and	a	single	browser	with	tabs	only	open	
to	the	class	website.	

	 	

• None	of	the	functions	you	write	should	produce	any	output.	
	

• Ten	points	will	be	awarded	for	making	all	14	submissions.	No	submissions	will	be	accepted	after	the	test	is	over.		It	
is	incumbent	on	you	to	make	the	submissions.		You	are	to	make	submissions	as	you	complete	questions.		

	

• Each	function	you	write	is	worth	ten	points.	The	expected	grading	rubric	is		
	

• Two	points	for	attempting	the	function;		
• One	point	for	following	instructions	(e.g.,	no	output	or	q06.f()	must	be	recursive);		
• Two	points	for	returning	a	value	of	the	proper	return	type.		
• Five	points	for	correctness,	where	except	for	modules	q03.py	and	q09.py	they	are	awarded	as	follows.	

	

§ One	point	for	getting	one	test	case	correct;		
§ Two	points	for	getting	two	test	cases	correct;	
§ Three	points	for	getting	three	test	cases	correct;	and		
§ Five	points	for	getting	all	test	cases	correct.		

	

For	function	q03.py	the	correctness	points	are	as	follows.	
§ Two	points	for	getting	a	test	case	correct	where	a	true	return	value	is	wanted	and	also	getting	a	

test	case	correct	where	a	false	return	value	is	wanted.	
§ Five	points	for	getting	all	test	cases	correct.	

	

For	function	q09.py	the	correctness	points	are	as	follows.	
§ Two	points	 for	 getting	 a	 test	 case	 correct	where	None	 is	wanted	 and	 also	 getting	 a	 test	 case	

correct	where	None	is	not	wanted.	
§ Five	points	for	getting	all	test	cases	correct.	

	

• Our	testing	of	the	functions	will	involve	different	test	cases	than	the	ones	used	for	elaborative	purposes	in	the	
problem	descriptions.	

	

CS	1112	Fall	2015	Test	3	
		

Page 2 of 6	

	

	 	

CS	1112	Fall	2015	Test	3	
		

Page 3 of 6	

1. Develop	module	q01.py.		The	module	defines	function	handback().		
	

Function	handback()	has	no	parameters.	The	function	returns	the	string		'success'.	
	

Program	q01-tester.py	for	module	q01.py	should	produce	the	following	output.	
	

	

handback()	=	success	
handback()	=	success	
handback()	=	success	
	

	
	

2. Develop	module	q02.py.		The	module	defines	function	line().		
	

Function	line()	has	three	parameters	m,	x,	and	b.	The	function	returns	the	value	of	m	· x	+	b.
	

Program	q02-tester.py	for	module	q02.py	should	produce	the	following	output.	
	

	

line(3,	1,	4)	=	7	
line(5,	9,	2)	=	47	
line(3,	8,	9		=	33	
line(7,	9,	3)	=	66	
line(8,	4,	6)	=	38	
	

	
	
3. Develop	module	q03.py.	The	module	define	function	same().		
	

Function	same()	has	two	parameters	u	and	v.	The	function	returns	whether	u	and	v	have	the	same	type.		
	

Program	q03-tester.py	for	module	q03.py	should	produce	the	following	output.	
	

	

same(1,	10)	=	True	
same(1.0,	1)	=	False	
same([1],	[2,	3])	=	True	
same(31,	abc)	=	False	
same((1,	2),	[1,	2])	=	False	

	

	 	
	
4. Develop	module	q04.py.	The	module	defines	a	function	common().		
			

Function	common()	has	integer	parameters	u	and	v,	where	u	≤	v.	The	function	returns	a	list	of	proper	factors	
common	to	both	u	and	v.		

	

The	factors	of	a	number	n	are	those	integers	that	when	dividing	n	have	a	remainder	of	zero	(e.g.,	factors	of	10	
are	1,	2,	5,	and	10).	A	factor	of	n	is	a	proper	factor	if	it	is	neither	1	nor	n	(e.g.,	proper	factors	of	10	are	2,	and	5).	

	

Program	q04-tester.py	for	module	q04.py	should	produce	the	following	output.	
	

	

common(2	,	4)	=	[]	
common(4	,	4)	=	[2]	
common(6	,	18)	=	[2,	3]	
common(8	,	16)	=	[2,	4]	
common(40	,	80)	=	[2,	4,	5,	8,	10,	20]	
common(90	,	100)	=	[2,	5,	10]	
	 	

CS	1112	Fall	2015	Test	3	
		

Page 4 of 6	

	
	

5. Develop	module	q05.py.		The	module	defines	functions	shortest().		
	

Function	shortest()	has	one	parameter	data.	Parameter	data	is	a	list	of	strings.	The	function	returns	the	length	
of	the	shortest	string	in	data,	where	data	is	nonempty.	

	

Program	q05-tester.py	for	module	q05.py	should	produce	the	following	output.		
	

	 	

shortest(['doing',	'assign',	'normally',	'each',	'part'])	=		4	
shortest(['of',	'an',	'assign',	'corresponds'])	=		2	
shortest(['works',	'to',	'the',	'operator'])	=		2	
shortest(['performs',	'addition',	'when',	'operands'])	=		4	
shortest(['style',	'rule',	'convene',	'for',',	'code'])	=		3	
shortest(['ab',	'',	'r',])	=		0	
	

	
	

6. Develop	module	q06.py.	The	module	defines	a	recursive	function	f	().			
	

Function	f	()	must	be	recursive.	The	function	has	one	integer	parameter	n	and	returns	an	integer	according	to	
the	following	specification:	

	

𝑓 𝑛 =
1 𝑛 ≤ 0
2 𝑛 = 1
𝑓(𝑛 − 1) ∙ 𝑓(𝑛 − 2) 𝑛 ≥ 2

	

	

Program	q06-tester.py	for	module	q06.py	should	produce	the	following	output.	
	

	

f(-1)	=	1	
f(0)	=	1	
f(1)	=	2	
f(2)	=	2	
f(4)	=	8	
f(8)	=	2097152	
f(10)	=	36028797018963968		
	

	
	
7. Develop	module	q07.py.	The	module	defines	a	function	grab().		
	

Function	grab()	has	two	parameters	d	and	data,	where	d	is	a	dict	and	data	is	a	list	of	possible	key	values	for	d.	
The	 function	 returns	a	 list	whose	elements	are	gotten	by	querying	d	with	 the	elements	of	data	 as	keys.	The	
order	of	elements	in	the	list	to	be	returned	should	match	the	order	of	the	corresponding	keys	in	data.		

	

Program	q07-tester.py	for	module	q07.py	should	produce	the	following	output.	
	

	
grab({1:	'I',	10:	'X',	5:	'V'},	[5,	10])	=	['V',	'X']	
grab({'B':	'b',	'C':	'c',	'D':	'd',	'A':	'a'},	['B',	'B',	'D'])	=	['b',	'b',	'd']	
grab({9:	2,	3:	1,	4:	1,	5:	1,	6:	5},	[3,	5])	=	[1,	1]	
	

	
	
	
	

CS	1112	Fall	2015	Test	3	
		

Page 5 of 6	

8. Develop	module	q08.py.	The	module	defines	a	function	search().		
	

Function	search()	has	two	parameters	data	and	w,	where	data	 is	a	list	and	w	 is	a	string.	The	function	returns	
the	number	of	occurrences	of	w	in	d.	In	determining	the	number	of	occurrences,	case	does	not	matter.	

	

Program	q08-tester.py	for	module	q08.py	should	produce	the	following	output.	
	

	
search(['1',	'I',	'5',	'V',	'10',	'X',	'5',	'10'],	'0')	=	0	
search(['1',	'I',	'5',	'V',	'10',	'X',	'5',	'10'],	'5')	=	2	
search(['A',	'a',	'B',	'b',	'C',	'c',	'D',	'd',	'B',	'B',	'D'],	'B')	=	4	
search(['A',	'a',	'B',	'b',	'C',	'c',	'D',	'd',	'B',	'B',	'D'],	'b')	=	4	
search(['A',	'a',	'B',	'b',	'C',	'c',	'D',	'd',	'B',	'B',	'D'],	'D')	=	3	
	

	
	
9. Develop	module	q09.py.	The	module	defines	a	function	solid().			
	

Function	solid()	has	one	parameter	drawing.	 	Parameter	drawing	 is	an	 Image.	 If	all	pixels	 in	drawing	 are	 the	
same	color,	the	function	returns	that	color.	If	the	pixels	are	not	all	the	same,	the	function	returns	None.	

	

Program	q09-tester.py	for	module	q09.py	should	produce	the	following	output.	
	

	
solid(<PIL.Image.Image	image	mode=RGB	size=31x41	at	0x101E6DC88>)	=	None	
solid(<PIL.Image.Image	image	mode=RGB	size=59x26	at	0x101E6DCF8>)	=	(128,	0,	128)	
solid(<PIL.Image.Image	image	mode=RGB	size=45x45	at	0x101E6DD68>)	=	None	
	

	
	
10. Develop	 module	 q10.py.	 The	 module	 defines	 functions	 generate(),	 complement(),	 slice(),	 snip(),	 and	

inverse	().	
	

There	are	four	kinds	of	nucleotide	modules	–	adenine,	cytosine,	guanine,	and	thymine.	They	are	commonly	
referred	to	respectively	as	A,	C,	G,	and	T.	Nucleotides	A	and	T	are	complementary	molecules,	C	and	G	are	also	
complementary	molecules.	

	

Functions	generate(),	complement(),	slice(),	snip(),	and	 inverse	(),	all	deal	with	nucleotides,	where	nucleotides	
are	represented	in	uppercase	string	format	(i.e.,	'A',	'C',	'G',	or	'T').	

	
	

Function	 generate()	 has	 no	 parameters	 and	 returns	 a	 random	 nucleotide.	 Each	 of	 the	 possible	 nucleotides	
should	be	equally	likely	to	be	the	return	value.	

	

Function	 complement()	 has	 one	 parameter	 n	 representing	 a	 single	 nucleotide.	 The	 function	 returns	 the	
complement	of	the	nucleotide.	If	n	does	not	represent	a	single	nucleotide,	the	function	returns	None.	

	

Function	slice()	has	three	parameters	s,	a,	and	b,	where	s	is	a	string	of	nucleotides,	and	a	and	b		are	indices	into	
s.	The	function	returns	a	new	string	of	nucleotides	that	is	equal	the	nucleotides	of	s	from	indices	a	through	b–1.	
You	may	assume	that	a	≤	b.	

	

Function	snip()	has	three	parameters	s,	a,	and	b,	where	s	is	a	string	of	nucleotides,	and	a	and	b	are	indices	into	s.	
The	function	returns	a	new	string	of	nucleotides	that	is	equal	to	s	without	its	nucleotides	at	indices	a	through	
b–1	inclusively.	You	may	assume	that	a	≤	b.	

	

CS	1112	Fall	2015	Test	3	
		

Page 6 of 6	

Function	 inverse()	 has	 a	 parameter	 s,	 where	 s	 is	 a	 string	 of	 nucleotides.	 The	 function	 returns	 a	 string	 of	
nucleotides,	each	of	whose	nucleotides	is	the	complement	of	the	corresponding	s	nucleotide.	

	

Program	q10-tester.py	for	module	q10.py	should	produce	the	following	output.†	
	

	
Test	generate()	yes	or	no?	yes	
	
generate()	=	G	
generate()	=	G	
generate()	=	A	
generate()	=	T	
generate()	=	C	
	
Test	complement()	yes	or	no?	yes	
	
complement('A')	=	T	
complement('C')	=	G	
complement('G')	=	C	
complement('T')	=	A	
complement('other')	=	None	
	
Test	slice()	yes	or	no?	yes	
	
slice('ACAGTCT',	0,	3)	=	ACA	
slice('ACCAACCCCGG',	1,	4)	=	CCA	
slice('TGAGTCCGAGGAGA',	5,	9)	=	CCGA	
slice('GGGTGCTTCAGAG',	2,	8)	=	GTGCTT	
	
Test	snip()	yes	or	no?	yes	
	
snip('ACAGTCT',	0,	3)	=	GTCT	
snip('ACCAACCCCGG',	1,	4)	=	AACCCCGG	
snip('TGAGTCCGAGGAGA',	5,	9)	=	TGAGTGGAGA	
snip('GGGTGCTTCAGAG',	2,	8)	=	GGCAGAG	
	
Test	inverse()	yes	or	no?	yes	
	
inverse('ACAGTCT')	=	TGTCAGA	
inverse('ACCAACCCCGG')	=	TGGTTGGGGCC	
inverse('TGAGTCCGAGGAGA')	=	ACTCAGGCTCCTCT	
inverse('GGGTGCTTCAGAG')	=	CCCACGAAGTCTC	
	

	

																																								 																					
†.	Function	generate()	can	be	implemented	in	different	ways,	so	your	output	could	be	different.	However,	in	your	
output	you	should	see	all	 four	possible	nucleotides	occurring	and	with	the	 first	 two	nucleotides	generated	being	
the	same.	

