
CS	1112	Spring	2016	Test	3	
		

Page 1 of 7	

Name:	
	

E-mail	ID:	
	
	

On	my	honor,	I	pledge	that	I	have	neither	given	nor	received	help	on	this	test.	
	
Signature:	

Testing	
	

• Print	your	name,	id,	and	pledge	as	requested.		
	

• This	pledged	exam	is	closed	textbook.	The	only	device	you	may	access	during	the	test	is	your	own	laptop.	
	

• You	are	not	allowed	to	access	class	examples	or	your	own	past	assignments	during	the	test;	i.e.,	the	only	Python	
code	you	may	access	or	view	are	ones	that	you	develop	for	this	test.		

	

• The	only	windows	that	can	be	open	on	your	computer	are	PyCharm	and	a	single	browser	with	tabs	only	open	
to	the	class	website.	

	 	

• Only	problems	1	and	6	should	produce	output.	
	
• No	 submissions	will	 be	accepted	after	 the	 test	 is	 over.	 	Eleven	points	will	 be	awarded	 for	 each	of	 the	 requested	

program	 or	 functions	 to	 be	 implemented.	 It	 is	 incumbent	 on	 you	 to	 make	 the	 submissions.	 	 You	 are	 to	 make	
submissions	as	you	complete	problems.		

	

• The	expected	grading	rubric	for	the	Problem	1	program	is		
	

• Two	points	for	the	submission;		
• Nine	points	for	correctness,	where	they	are	awarded	as	follows:	

§ One	point	for	a	single	line	of	output;	
§ One	point	for	no	leading	or	trailing	spaces	in	the	output;	
§ Three	points	for	printing	711;	
§ One	point	for	a	printing	a	single	space	after	the	711;	
§ Three	points	for	printing	pounds	in	lower	case	after	the	space.	

	
	

• The	expected	grading	rubric	for	a	function	is		
	

• Two	points	for	attempting	the	function;		
• One	point	for	following	instructions	(e.g.,	no	output	for	function	q02.rate();		
• Two	points	for	always	returning	a	value	of	the	proper	return	type.		
• Six	points	for	correctness,	where	except	for	functions	q03.one(),	q06.generate(),	q07.f(),	q09.friendly(),	

and	q09.mutual()	they	are	awarded	as	follows.	
	

§ One	point	for	getting	one	test	case	correct;		
§ Two	points	for	getting	two	test	cases	correct;	
§ Three	points	for	getting	three	test	cases	correct;	and		
§ Six	points	for	getting	all	test	cases	correct.		

CS	1112	Spring	2016	Test	3	
		

Page 2 of 7	

• For	function	q03.one(),		q09.friendly(),	and	q09.mutual()		the	correctness	points	are	awarded	as	follows.	
§ Two	points	for	getting	a	test	case	correct	where	a	true	return	value	is	wanted	and	also	getting	a	

test	case	correct	where	a	false	return	value	is	wanted.	
§ Six	points	for	getting	all	test	cases	correct.	

	

• For	function	q06.generate()	the	correctness	points	are	awarded	as	follows.	
§ Four	points	for	printing	all	of	the	requested	tuples;	
§ One	point	for	printing	the	tuples	one	per	line;	
§ One	point	for	no	output	other	than	the	tuples	(e.g.,	no	blank	lines).	

	

• For	function	q07.f()	the	correctness	points	are	awarded	as	follows.	
§ Two	points	for	having	a	recursive	definition	of	f().	
§ Two	points	for	getting	a	test	case	correct	where	a	true	return	value	is	wanted	and	also	getting	a	

test	case	correct	where	a	false	return	value	is	wanted.	
§ Four	points	for	getting	all	test	cases	correct	

	

• Our	testing	of	the	functions	will	involve	different	test	cases	than	the	ones	used	for	elaborative	purposes	in	the	
problem	descriptions.	

		
	 	

CS	1112	Spring	2016	Test	3	
		

Page 3 of 7	

1. (11	points)	Develop	program	q01.py	
	

• The	program	prints	the	string	'711	pounds'.	For	your	information	that	is	the	answer	to	the	riddle	how	
much	wood	could	a	woodchuck	chuck	if	a	woodchuck	could	chuck	wood	(on	a	good	day	with	the	wind	too	
its	back.	

	

• A	run	of	program	q01.py	should	produce	the	following	output.	
	

	

711	pounds	
	

	
	
2. (11	points)	Develop	module	q02.py.	The	module	defines	a	function	rate().		
	

• Function	rate()	has	one	integer	parameter	kph.	The	function	returns	its	wind	force	category	according	to	an	
abbreviated	version	of	the	Beaufort	scale.	

	

• O	kph	is	Calm	
• 1	–	49	kph	is	a	Breeze	
• 50	–	117	kph	is	a	Storm	
• 118	or	greater	is	a	Hurricane	

	

• Program	prog02-rate.py	invokes	function	rate()	and	should	produce	the	following	output.	
	 	

	

rate(1)	=	Breeze	
rate(0)	=	Calm	
rate(121)	=	Hurricane	
rate(117)	=	Storm		
	

	
	
3. (11	points)	Develop	module	q03.py.	The	module	defines	a	function	one().		
	

• Function	one()	has	four	Boolean	parameters	w,	x,	y,	and	z.	The	function	returns	whether	exactly	one	of	w,	x,	
y,	and	z	is	True.	

	

Program	prog03-one.py	invokes	function	one	()	and	produces	the	following	output.	
	

	

one(True,		False,	False,	False)	=	True	
one(False,	False,	True,		True)	=	False	
one(False,	False,	True,		False)	=	True	
one(False,	True,		False,	False)	=	True	
one(False,	False,	False,	False)	=	False	

	

	
	 	

CS	1112	Spring	2016	Test	3	
		

Page 4 of 7	

4. (11	points)	Develop	module	q04.py.	The	module	defines	function	convert()	.	
	

• Function	convert()	has	one	 string	parameter	csv.	 Parameter	 csv	 is	 a	 string	of	 comma-separated	 integers.	
The	function	returns	a	list	of	integer	values	corresponding	to	the	number	strings	in	csv.	

	

Program	prog04-convert.py	invokes	function	convert()	and	produces	the	following	output.		
	

	 	

convert('31,41,59\n26,53,58\n97,93,23\n84,62,64')	
					=	[[31,	41,	59],	[26,	53,	58],	[97,	93,	23]]	
convert('84	62	64\n33,83	27\n95,	2,88\n41,97,16\n93,99,37')	
					=	[[84,	62,	64],	[33,	83,	27],	[95,	2,	88],	[41,	97,	16],	[93,	99,	37]]	
	

	
	
5. (11	points)	Develop	module	q05.py.	The	module	defines	function	calc().	
	

• Function	 calc()	 has	 one	 list	 parameter	 data.	 Each	 element	 of	 data	 is	 a	 list	 of	 three	 integer	 values.	 The	
function	 returns	 a	 list	 of	 three	 values.	 The	 first	 value	 in	 the	 return	 is	 the	 integer	 average	 of	 the	 first	
elements	in	the	data	lists.	The	second	value	in	the	return	is	the	integer	average	of	the	second	elements	in	
the	data	lists.	The	third	value	in	the	return	is	the	integer	average	of	the	third	elements	in	the	data	lists.	

	
Program	prog05-calc.py	invokes	function	calc	()	and	produces	the	following	output.		

	
	 	

calc([[31,	41,	59],	[26,	53,	58],	[97,	93,	23],	[84,	62,	64]])	
					=	[59,	62,	51]	
calc([[33,	83,	27],	[95,		2,	88],	[41,	97,	16]]])	
					=	[56,	60,	43]	
	

	
	
6. (11	points)	Develop	module	q06.py.	The	module	defines	a	function	generate()	.	
	 	

• Function	generate()	has	one	parameter	n	and	does	not	return	a	value.	The	program	prints	all	three-tuples	
where	each	value	in	a	tuple	comes	from	the	range(1,	n+1).		

	

Program	prog06-generate.py	invokes	function	generate()	and	produces	the	following	output.	
	

	

(1,	1,	1)	
	
(1,	1,	1)	
(1,	1,	2)	
(1,	2,	1)	
(1,	2,	2)	
(2,	1,	1)	
(2,	1,	2)	
(2,	2,	1)	
(2,	2,	2)	

	
	
	

Because	function	generate()	can	be	implemented	in	different	ways,	your	 listing	of	tuples	can	be	different.	
However,	all	the	tuples	listed	in	the	box,	and	no	others,	must	make	up	your	output.	

	

	 	

CS	1112	Spring	2016	Test	3	
		

Page 5 of 7	

7. (11	points)	Develop	module	q07.py.	The	module	defines	a	recursive	function	f	().			
	

• Function	 f	 ()	 must	 be	 recursive.	 The	 function	 has	 one	 string	 parameter	 s	 and	 returns	 True	 or	 False	
according	to	the	following	specification.	In	the	specification	n	is	the	length	of	string	s:	

	

! ! =
True ! = 0
True ! = 1
! 0 equals ! ! − 1 and !(! 1: ! − 1) ! > 1

	

	

Program	prog07-f.py	uses	function	f()		and	produces	the	following	output.		
	

	 	

f('A')	=		True	
f('AB')	=		False	
f('ABA')	=		True	
f('ABAB')	=		False	
f('ABBA')	=		True	
f('ABABA')	=		True	
f('ABBABB')	=		False	
	

	
	
8. (11	points)	Develop	module	q08.py.	The	module	defines	a	function	tri()	.	
	 	

• Function	tri()	has	one	parameter	drawing	of	type	Image.	The	function	returns	a	new	Image	with	the	same	
dimensions	 as	 drawing.	 The	 color	 of	 a	 pixel	 in	 the	 new	 Image	 depends	 upon	 the	 (r,	 g,	 b)	 values	 of	 the	
corresponding	pixel	in	drawing.		

	

• The	pixel	color	is	(r,	0,	0),	if	r	is	the	maximum	of	r,	g,	and	b;	
• Otherwise,	the	pixel	color	is	(0,	g,	0),	if	g	is	the	maximum	of	g	and	b;	
• Otherwise,	the	pixel	color	is	(0,	0,	b).	

	
The	below	images	are	grey	scale	versions	of	the	images	program	prog08-tri.py	manipulates	with	its	use	
of	function	tri().		Color	versions	of	the	pictures	are	available	on	the	class	website.	

	

	

	 	
	

	 	

CS	1112	Spring	2016	Test	3	
		

Page 6 of 7	

9. (44	points)	Develop	module	q09.py.		The	module	defines	functions	friendly(),	mutual(),	join(),	and	bff().	
	

• Several	of	the	module	functions	have	a	dict	parameter	liking.	A	liking	key	is	the	name	of	a	person;	the	
value	of	a	liking	key	is	the	list	of	people	to	whom	the	key	person	is	friendly	(i.e.,	the	key	person’s	friends).		
The	following	code	segment	defines	likes1	and	likes2	for	liking	examples.		

	 	
	

likes1	=	{	'Noah':				['Sophia',	'Mason',	'Liam'],	
											'Emma':				['Sophia',	'Liam',	'Olivia'],	
											'Sophia':		['Mason'],	
											'Olivia':		['Emma',	'Liam',],	
											'Mason':			['Olivia',	'Sophia'],	
											'Liam':				['Emma',	'Noah',	'Olivia',	'Sophia']	}	
	
likes2	=	{	'Bella':			['Max',	'Lucy',	'Charlie',	'Bailey',	'Daisy',	'Molly'],	
											'Max':					[],	
											'Charlie':	['Bella',	'Sadie',	'Bailey',	'Max'],	
											'Molly':			['Bailey',	'Bella'],	
											'Lucy':				['Max',	'Bailey',	'Bella'],	
											'Bailey':		['Lucy',	'Sadie',	'Daisy'],	
											'Sadie':			['Lucy',	'Daisy'],	
											'Daisy':			['Bailey',	'Lucy',	'Molly',	'Charlie',	'Bella']	}		
	

		

In	 likes1,	 'Mason'	 is	 friendly	 with	 'Olivia'	 and	 'Sophia'.	 In	 likes2,	 'Lucy'	 is	 friendly	 with	 'Max',	
'Bailey',	and	'Bella'	

	
• Function	 friendly()	has	parameters	 liking,	name1,	 and	name2.	Parameter	 liking	 is	a	dict;	parameters	are	

name1	 and	 name2	 are	 strings.	 	 The	 function	 returns	 whether	 according	 to	 the	 liking	 dict,	 name1	 has	
name2	as	a	friend.		

	
For	example,	suppose	the	 liking	parameter	 list1	dict	given	above.	If	name1	and	name2	were	respectively	
'Mason'	 and	'Noah',	 then	 the	 function	 returns	False	 ('Mason'	 does	 not	 consider	'Noah'	 a	 friend).	 	 If	
instead	name1	and	name2	were	respectively	'Noah'	and	'Mason',	then	the	function	returns	True	('Noah'	
considers	'Mason'	a	friend).	

	 	

Program	prog09-friendly.py	uses	function	friendly()	and	produces	the	following	output.		
	

	 	

friendly(like1,	'Mason',			'Sophia')	=	True	
friendly(like2,	'Charlie',	'Molly')	=	False	
	

	
• Function	mutual()	 has	parameters	 liking,	name1,	 and	name2.	 Parameter	 liking	 is	 a	dict;	 parameters	 are	

name1	 and	 name2	 are	 strings.	 The	 function	 returns	 whether	 according	 to	 the	 liking	 dict,	 name1	 has	
name2,	and	name2	as	a	friend.		

	
For	example,	suppose	the	 liking	parameter	 list1	dict	given	above.	If	name1	and	name2	were	respectively	
'Mason'	 and	'Noah',	 then	 the	 function	 returns	False	 ('Mason'	 does	 not	 consider	'Noah'	 a	 friend).	 	 If	
instead	 name1	 and	 name2	 were	 respectively	 'Mason'	 and	 'Sophia',	 then	 the	 function	 returns	 True	
('Mason'	considers	'Sophia'	a	friend,	as	does	'Sophia'	with	'Mason').		

	
	 	

CS	1112	Spring	2016	Test	3	
		

Page 7 of 7	

Program	prog09-mutual.py	uses	function	mutual()	and	produces	the	following	output.		
	

	 	

mutual(like1,	'Liam',	'Noah')	=	True	
mutual(like2,	'Lucy',	'Charlie')	=	False	
	

	

• Function	join()	has	two	parameters	friends1	and	friends2.	The	function	returns	a	new	list	whose	elements	
are	those	of	friends1	followed	by	those	of	friends2	with	duplicates	not	being	removed.			

	

For	 example,	 suppose	 friends1	 is	 the	 list	 ['Sophia',	 'Mason',	 'Liam'];	 and	 friends2	 is	 the	 list	
['Olivia',	 'Sophia'],	 the	 return	 value	 is	 the	 list	 ['Sophia',	 'Mason',	 'Liam',	 'Olivia',	
'Sophia']	.	

	 	

Program	prog09-join.py	uses	function	join()	and	produces	the	following	output.		
	

	 	

join(['Sophia',	'Mason',	'Liam'],	['Liam',	'Olivia',	'Sophia',	'Mason'])	
				=	['Sophia',	'Mason',	'Liam',	'Liam',	'Olivia',	'Sophia',	'Mason']	
join(['Olivia',	'Emma',	'Liam',	'Mason',	'Olivia'],	['Sophia',	'Liam',	'Emma'])	
				=	['Olivia',	'Emma',	'Liam',	'Mason',	'Olivia',	'Sophia',	'Liam',	'Emma']	
	

	

• Function	bff()	has	one	dict	parameter	liking.	The	function	returns	the	person	who	is	a	friend	of	the	largest	
number	of	people	(i.e.,	the	person	who	appears	in	the	most	friends	lists).		If	there	is	tie	for	most	frequent,	
then	return	any	one	of	the	most	frequent.	

	

For	 example,	 suppose	 the	 liking	 parameter	 list1	 dict	 given	 above.	 Then	 the	 return	 value	 is	 'Sophia'	
because	 that	 name	 occurs	 the	most	 among	 the	 lists	 of	 friends.	 Your	 implementation	 cannot	 import	 any	
statistics	modules.		

	

Program	prog09-bff.py	uses	function	bff()	and	produces	the	following	output.		
	

	 	

bff(likes1)	=	Sophia	
bff(likes2)	=	Bailey	
	

	
	

	

