
CS	1112	Fall	2017	Test	3	
	

Page	1	of	6	

Very	legibly	print	your	name:	
	
Very	legibly	print	your	email	id:	
	
Pledge:	
	

Important	

• You	are	responsible	for	reading	this	page	in	its	entirety.	

• Based	on	your	many	past	educational	achievements,	I	expect	you	to	do	well	on	this	test.	

• Read	each	question	both	thoroughly	and	mindfully	of	what	is	being	asked.	

• To	receive	points,	you	must	turn	in	your	test.		
	

Terminology	

• Increment	means	add.	

• Decrement	means	subtract.	

• The	additive	inverse	of	a	number	x,	is	–x.	

• The	value	of	x	/	y	is	called	a	quotient.	

• A	number	x	 is	evenly	divisible	by	a	number	y,	if	the	remainder	of	x	divided	by	y	 is	zero.	The	%	 is	the	Python	
remainder	operator.	

• The	terms	dataset	and	table	are	synonymous.	They	are	lists	of	lists.	The	standard	view	is	they	are	lists	of	rows,	
where	each	row	is	a	list	of	column	values.	The	individual	column	values	are	called	cells.	

	

Test	rules	of	conduct	

• This	pledged	exam	is	closed	notes.	The	only	device	you	may	access	during	the	test	is	your	laptop.	

• Do	not	access	class	examples,	web	solutions,	or	your	own	past	assignments	during	the	test;	that	is,	the	only	
code	you	may	access	or	view	are	ones	that	you	develop	for	this	test.		

• The	only	windows	to	be	open	on	your	computer	are	PyCharm,	and	a	single	browser	with	tabs	linked	from	the	
class	website.	

• Functions	should	demonstrate	follow	style	rules;	e.g.,	whitespace,	identifier	naming,	commenting,	etc.	

• Whether	a	function	is	testable	is	important.	To	be	testable,	a	function	must	have	at	least	one	statement.	So,	if	
you	comment	out	all	of	a	function’s	code,	add	an	uncommented	pass	statement.	

• With	respect	to	output,	only	do	what	is	requested.	Spurious	output	can	cause	loss	of	points.	

• Your	functions	should	neither	get	input	nor	produce	output.		

• Your	functions	should	not	modify	their	parameters	in	any	way.	

• Any	form	of	cheating	on	a	test	can	result	6	 	failure	and	the	incident	being	referred	to	the	Honor	Committee.	

CS	1112	Fall	2017	Test	3	
	

Page	2	of	6	

	 	

CS	1112	Fall	2017	Test	3	
	

Page	3	of	6	

1. Modify	 the	definition	of	 variable	status	 in	 program	q01_output.py.	 It	 should	be	 set	 to	'yes'	 or	'no'	
depending	whether	you	asked	a	question	 to	 the	 instructor	or	gave	an	answer	 in	 reply	 to	a	question	by	 the	
instructor	(full	points	will	be	awarded	regardless	of	whether	you	answer	'yes'	or	'no'.	There	should	be	no	
other	output.	

The	correct	program	output	is	either	

yes

or		

no

2. Implement	 program	q02_input.py.	 The	 program	uses	 a	 single	 prompt	 to	 cause	 the	 user	 to	 supply	 three	
words.	The	words	are	printed	out	with	the	first	word	in	lowercase,	the	second	word	in	uppercase,	and	with	the	
third	word	capitalized.	There	should	be	no	other	output.	

	A	possible	run	of	the	program	is	depicted	below.	

Enter three words: AlphA betA dELTa
alpha BETA Delta

3. Implement	program	q03_decisions.py.	The	program	uses	a	single	prompt	to	cause	the	user	to	supply	two	
non-zero	integers.	If	the	numbers	are	both	positive,	their	difference	is	printed.	If	instead	the	numbers	are	both	
negative,	their	sum	is	printed.	If	instead	the	first	number	is	negative	and	the	second	is	positive,	their	decimal	
quotient	is	printed;	otherwise	their	product	is	printed.	There	should	be	no	other	output.	

Four	different	possible	runs	are	given	below.	

Enter two non-zero integers: 3 4
-1	

		 	

Enter two non-zero integers: -2 -5
-7	

		 	

Enter two non-zero integers: -4 8
-0.5	

	 	

Enter two non-zero integers: 9 -3
-27	

4. Implement	program	q04_list_input.py.	 The	program	uses	 a	 single	prompt	 to	 cause	 the	user	 to	 supply	
integers.	The	values	are	first	printed	out	as	a	list	of	strings.	The	values	are	then	printed	out	as	a	list	of	integers.	
The	elements	of	that	list	are	then	replaced	with	their	additive	inverses	and	printed	out.	

A	possible	run	of	the	program	is	depicted	below.	

Enter integers: 3 -1 4 1 -5 -9
['3', '-1', '4', '1', '-5', '-9']
[3, -1, 4, 1, -5, -9]
[-3, 1, -4, -1, 5, 9]	

CS	1112	Fall	2017	Test	3	
	

Page	4	of	6	

Another	possible	run	of	the	program	is	depicted	below.	

Enter integers: -2 -4 6
['-2', '-4', '6']
[-2, -4, 6]
[2, 4, -6]	

5. Produce	a	module	q05_randomness.py.	The	module	defines	two	functions	toss()	and	streak().	
toss()
• Simulates	a	fair	coin	toss	by	randomly	returning	'heads'	or	'tails'.	

streak(n)
• Invokes	the	toss()	function	n	times.	Returns	a	two-element	list.	The	first	element	is	the	number	of	

times	toss()	returns	'heads';	and	the	second	element	is	the	number	of	times	the	toss()	returns	
'tails'.	

The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	output.	

heads tails heads tails
[2482, 2518]
[24929, 25071]

	

6. Produce	a	module	q06_functions.py.	The	module	defines	three	functions	leap_year(),	months(),	and	
ytd().	
leap_year(y)
• Returns	True	or	False	depending	whether	y	is	a	leap	year.	A	year	is	a	leap	year,	if	it	is	evenly	divisible	

by	4	and	not	evenly	divisible	by	100.	Also,	a	year	is	a	leap	year,	if	it	is	evenly	divisible	by	400.	All	other	
years	are	not	leap	years.	

months(y)
• Returns	a	12-element	list	giving	the	numbers	of	days	in	each	month	for	year	y.	

ytd(m, d, y)
• Returns	the	day	of	the	year,	where	the	year	is	y,	the	month	is	m,	and	the	day	of	the	month	is	d.	For	

example,	1/1/2017	is	the	1st	day	of	the	year,	12/7/2017	is	the	341st	of	the	year,	and	3/1/2020	is	the	61st	
day	of	the	year.	

The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	output.	

False	True	False	True	 	

[31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31]	

[31,	29,	31,	30,	31,	30,	31,	31,	30,	31,	30,	31]	

1	341	61	365	

7. Produce	a	module	q07_dictionary.py.	The	module	defines	functions	make()	and	surjection().	
make(k, v)
• If	the	lengths	of	k	and	v	are	not	equal,	the	function	returns	None.	Otherwise,	the	function	returns	a	

new	dictionary.	In	this	dictionary,	the	ith	element	of	k	maps	to	the	ith	element	of	v.	

CS	1112	Fall	2017	Test	3	
	

Page	5	of	6	

surjection(d)
• Returns	True	or	False	depending	there	are	no	duplicates	in	d.values().	

	The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	output.	

None
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
True, False 	

8. Produce	a	module	q08_bw.py.	The	module	defines	two	functions	bicolor()	and	bw().	
bicolor(pixel)
• Returns	(0,	0,	0)	if	the	sum	of	the	RGB	values	for	pixel	is	less	than	382.5	

(i.e.,	3	•	255	/	2);	otherwise,	returns	(255,	255,	255).		

bw(original)
• Returns	a	new	image	that	is	based	on	original,	where	a	pixel	in	the	new	

image	 is	 obtained	 by	 using	 bicolor()	 on	 the	 corresponding	pixel	 in	
original.	

The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	
output	and	the	image	to	the	right.	

(255, 255, 255)

(0, 0, 0)	
	

9. Produce	a	module	q09_shift.py.	The	module	defines	three	functions	legal(),	offset(),	and	shift().	
legal(v)
• Returns	an	integer	based	on	integer	v.	If	v	is	negative,	the	function	returns	0.	If	instead	v	exceeds	255,	

the	function	returns	255.	Otherwise,	 the	function	returns	v.	Thus,	 the	return	value	 is	always	a	 legal	
value	for	an	individual	RGB	level.	

offset(pixel, x, y, z)
• Returns	the	new	color	(legal(nr),	legal(ng),	legal(nb)),	where	nr,	ng,	and	nb	are	the	values	

gotten	 by	 decrementing	 the	 RGB	 values	 of	 pixel	 respectively	 by	 the	
amounts	x,	y,	and	z.	

shift(original, x, y, z)
• Returns	a	new	image	that	is	based	on	original,	where	a	pixel	in	the	new	

image	 is	 obtained	 by	 using	 offset()	 on	 the	 corresponding	 pixel	 in	
original	with	offset	amounts	x,	y,	and	z.	

The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	
output	and	a	greenish	version	of	the	image	to	the	right.	

0 125 255

(0, 50, 125)	
	
	

CS	1112	Fall	2017	Test	3	
	

Page	6	of	6	

10. Produce	a	module	q10_datasets.py.	The	module	defines	one	function	add().	
add(d1, d2)
• Parameters	d1	and	d2	are	both	integer	datasets.		

	

You	can	assume	d1	and	d2	have	the	same	number	of	rows.	You	can	also	assume	all	rows	of	d1	and	d2	have	the	
same	number	of	columns.	

	

• The	function	returns	a	new	dataset	with	the	same	number	of	rows	and	columns	as	does	d1	and	d2.	A	
cell	in	the	new	table	is	the	sum	of	the	corresponding	cells	in	d1	and	d2.	

The	module	includes	a	built-in	tester.	A	run	of	the	tester	should	produce	the	below	output.	

 [[1, 2, 2, 0], [0, 4, 2, 4], [2, 4, 1, 1]]
 [[4, 4, 0, 1], [4, 4, 4, 1], [1, 2, 0, 4]]
sum: [[5, 6, 2, 1], [4, 8, 6, 5], [3, 6, 1, 5]]
	 	

 [[1, 2, 2], [2, 3, 2], [4, 2, 1], [0, 0, 2], [2, 4, 4], [4, 4, 1]]
 [[1, 2, 0], [4, 0, 0], [2, 2, 1], [4, 1, 0], [1, 0, 3], [1, 4, 3]]
sum: [[2, 4, 2], [6, 3, 2], [6, 4, 2], [4, 1, 2], [3, 4, 7], [5, 8, 4]]	

11. Produce	 a	 module	 q11_strings.py.	 The	module	 defines	 three	 functions	 reverse(),	 cleanup(),	 and	
viceversa().	
reverse(s)
• Returns	the	reverse	of	string	s.	

cleanup(s)
• Returns	a	version	of	s	with	all	blanks	removed.		

viceversa(s)
• Returns	True	or	False	depending	whether	a	cleanup()	version	of	s	is	the	same	forward	as	backward.	

The	module	includes	a	built-in	tester	for	functions	reverse(),	cleanup(),	and	viceversa().	A	run	of	the	
tester	should	produce	the	below	output.	

' how high is high '
' able was i ere i saw elba'
	

[' how', ' high is h', 'igh ']
[' able', ' was i ere i s', 'aw elba']
	

'howhighishigh'
'ablewasiereisawelba'
	

' hgih si hgih woh '
'able was i ere i saw elba '
	

False
True

	

