Name:

E-mail ID:

On my honor, I pledge that I have neither given nor received help on this test.

Signature:

Test rules

- Print your name, id, and pledge as requested.
- This pledged exam is closed textbook. The only device you may access during the test is your own laptop.
- You are not allowed to access class examples or your own past assignments during the test; i.e., the only Python code you may access or view are ones that you develop for this test.
- The only windows that can be open on your computer are PyCharm and a single browser with tabs only open to the class website.
- PyCharm can be used only for developing the Python files to be submitted. It cannot be used for the true-false and short answer questions.
- Code should compile and demonstrate proper programming style; e.g., header comments, whitespace, identifier naming, etc.

Page 2:

Page 3: / 8

Page 4: / 12

Total:
/ 30

1. (10 points) Consider the following code segment. In answering the below true and false questions.
```
def f( x ) :
    y = 10 * x
    print( y )
a = 2
b = f( a )
print( 'y =', y )
```

a. True or false: x is called the parameter of f. \square
b. True or false: x is called the argument of f. \square
c. True or false: x is called the input of f.
d. True or false: f does not have a return value. \square
e. True or false: the return value of f is None. \square
f. True or false: $f(a)$ is an invocation. \square
g. True or false: a is a local variable of f.

h. True or false: x is a local variable of f.

i. True or false: y is a local variable of f.
j. True or false: the statement print (' $\mathrm{y}=\mathrm{\prime}$ ' , y) causes $y=20$ to be printed.

2. (8 points) Suppose the following four function definitions are in effect

```
def s( a ) :
    a = 1112
def t( a ) :
    a = 1112
    return a
```

```
def u( a ) :
```

def u(a) :
a[0] = 1112
a[0] = 1112

```
def v( a ) :
```

def v(a) :
a = [1112]
a = [1112]
return a

```
    return a
```

a. What is the output of the following code segment?

```
x = 1
s( x )
print( x )
```

\square
b. What is the output of the following code segment?
$a=1$
s(a)
print(a)
\square
c. What is the output of the following code segment?
$x=1$
$\mathrm{t}(\mathrm{x})$
print(x)

d. What is the output of the following code segment?

```
a = 1
t( a )
print( a )
```


f. What is the output of the following code segment?

```
x = [ 3, 1, 4, 1 ]
u( x )
print( x[ 0 ] )
```


h. What is the output of the following code segment?

$$
\begin{aligned}
& x=[3,1,4,1] \\
& x=v(x) \\
& \operatorname{print}(x[0])
\end{aligned}
$$

\square
3. (3 points) What should the comment be for describing function $f()$?

```
def f( x, y, z ) :
    t1 = type( x )
    t2 = type( y )
    t3 = type( z )
    return ( (t1 == t2 ) and ( t2 == t3 ) )
```


4. (3 points) What should the comment be for describing function $f()$?

```
def f( x ) :
        n = len( x )
        for i in range( 0, n ) :
            if ( x[ i ] < 0 ) :
                x[ i ] = -x[ i ]
```


5. (3 points) What should the comment be for describing function $f()$?

```
def f( x ) :
    b1, b2, b3 = False, False, False
    n = len( x )
    for i in range( 0, n ) :
            if ( x[ i ] < 0 ) :
            b1 = True
        elif ( x[ i ] == 0 ) :
            b2 = True
        else :
            b3 = True
        b = b1 and b2 and b3
        return b
```


6. (3 points) What should the comment be for describing function $f()$?

```
def f( x ) :
        b1, b2, b3 = False, False, False
        n = len( x )
        for i in range( 0, n ) :
        b1 = b1 or ( x[ i ] < 0 )
        b2 = b2 or ( x[ i ] == 0 )
        b3 = b3 or ( x[ i ] > 0 )
        b = b1 and b2 and b3
        return b
```


Part II Module implementation

7. (10 points) Develop module a.py. The module defines a single function $f()$. The function has no parameters and does not have a return statement. The function prints your email id and nothing else. Also develop a program atest. py. The only action of the tester is to invoke function $f()$ exactly once. Suppose the email id of the code developer for a.py is mst3k. The output of the tester should be
```
mst3k
```

8. (10 points) Develop module b.py. The module defines a single function $f()$. The function has four parameters a, b, c, and v that are to be numeric values. The function does not print any output. The function returns the value of $a \times v^{2}+b \times v+c$. A tester btest. py for function $f()$ is available. A run of the tester should produce output
32.25
45.125
37.516000000000005
9. (10 points) Develop module c.py. The module defines a single function $f()$. The function has one parameter x that is to be a list of strings. The function does not print any output. The function returns the length of the longest string in x. A tester ctest. py for function $f()$ is available. A run of the tester should produce output

10. (10 points) Develop module d.py. The module defines a single function $f()$. The function has two parameters b and c that are to be numeric lists. The function does not print any output. The function returns the inner product of b and c, where

- If b and c have different lengths, the inner product is None.
- If b and c have the same length, then the inner product is

$$
(b[0] \times c[0])+(b[1] \times c[1])+\ldots+(b[n-1] \times c[n-1])
$$

where n is the length of the lists. A tester dtest. py for function $f()$ is available. A run of of the tester should produce output

```
38
```

None
55
11. (10 points) Develop module e.py. The module defines a single function $f()$. The function has one parameter s whose value is a string containing zero or more numerical values. The function does not print any output. The function returns the numeric list corresponding to s. For example, if $x=$ ' 1.2 $3.45 .6^{\prime}$ then $f(x)$ returns [1.2, 3.4, 5.6]. A tester etest.py for function $f()$ is available. A run of of the tester should produce output

```
[3.0, 1.0, 4.0, 1.0]
[5.0, 9.0, 2.0]
[1.25, 2.5, 3.75, 4.0, 5.25]
```

12. (10 points) Develop module $f . p y$. The module defines a single function $f()$. The function has two parameters x and y whose values are lists. The function does not print any output. The function returns as a list one copy of each value in x that is not in y. For example, the following code segment
```
x1 = [ 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9 ]
y1 = [ 2, 7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5 ]
u1 = f.f( x1, y1 )
```

sets u1 to [3, 9, 6]. A tester ftest.py for function $f()$ is available. A run of of the tester should produce output

```
[3, 9, 6]
['s', 'i', 'g']
[]
```

13. (10 points) Develop module g.py. The module defines a single function $f()$. The function has one parameter m whose value is to be a dict. The function does not print any output. The function returns whether each key in maps to a different value. For example, the following code segment
```
abc = { 'A' : 'apple', 'B' : 'banana', 'C' : 'cherry' }
roman = { 'i' : 1, 'I' : 1, 'v' : 5, 'V' : 5, 'x' : 10, 'X' : 10 }
b1 = g.f( abc )
b2 = g.f( roman )
```

sets b1 to True because each key in abc maps to a unique value and set b2 to False as different keys in roman are mapped to the same value. A tester gtest. py for function $f()$ is available. A run of of the tester should produce output

```
True
True
False
```

