
CS	1112	Test	3	 	 Spring	2017	

 Page 1 of 6

Signature:	
	
	
	

Pledge:	On	my	honor,	I	pledge	that	I	have	neither	given	nor	received	help	on	this	test.	
	

Test	rules	
	

• You	may	use	a	single	page	of	notes.	The	only	device	you	may	access	during	the	test	is	your	laptop.	
• Do	not	access	class	examples	or	your	own	past	assignments	during	the	test;	that	is,	the	only	code	you	

may	access	or	view	are	ones	that	you	develop	for	this	test.		
• The	only	computer	windows	to	be	open	are	PyCharm	and	a	browser	that	only	accesses	class	website	

links.	
• Code	should	demonstrate	follow	style	rules;	e.g.,	header	comments,	whitespace,	identifier	naming,	etc.	
• Whether	a	function	is	runnable	is	important.	
• Unless	indicated,	functions	should	not	modify	their	parameters	in	any	way.	

	
	

1. (9	points)	Develop	a	program	q01.py.	The	program	prints	the	string	'I pledge to do my honest best
on this test.'	It	prints	no	other	output,	whatsoever.	Below	is	a	sample	run	of	the	program	

	
	

I pledge to do my honest best on this test.
	

	
	

2. (9	points)	Develop	a	program	q02.py.	The	program	separately	prompts	the	user	(i.e.,	it	uses	two	input()	
invocations)	for	two	strings	and	prints	their	combined	length	and	nothing	else	(e.g.,	no	labelling	or	blank	lines).		
Below	are	two	sample	runs	of	the	program.	

	
	

Enter a string: Can anyone hear me?
Enter a string: What did you say?
36
				

	
	

Enter a string: What time is it please?
Enter a string: The time is now.
39
	 	

	

3. 	(10	points)	Develop	a	program	q03.py.	The	program	prompts	the	user	for	two	integers	m	and	n	(i.e.,	it	uses	
a	 single	input()	 invocation)	 and	 prints	 a	 single	 line	 containing	 the	 quotient	 of	m	 divided	 by	n,	 and	 the	
remainder	of	m	divided	by	n,	and	nothing	else.	Below	are	two	sample	runs	of	the	program.	

	
	

Enter two numbers: 55 16
3 7
	

CS	1112	Test	3	 	 Spring	2017	

 Page 2 of 6

	
	

Enter two numbers: 1776 1066
1 710
	

	
	

4. (10	points)	Develop	a	module	q04.py.	The	module	defines	a	function	bmi()	that	takes	two	parameters	w	and	
h,	which	are	respectively	in	pounds	and	inches.		
• bmi(w, h)

The	function	returns	the	body	mass	index	for	a	person	of	weight	w	and	height	h.	The	formula	for	body	
mass	index	is	703	w	/	h2.	

	

Program	test04.py	makes	three	invocations	of	function	bmi()	and	produces	output	
	

	

25.780
24.410
21.698
	

	
	

5. (10	points)	Develop	a	module	q05.py.	The	module	defines	a	function	mid()	that	takes	a	string	parameter	s.		
• mid(s)

If	length	of	s	is	odd,	the	function	returns	the	middle	character	of	s;	otherwise,	the	function	returns	
the	two	middle	characters	of	s.	For	example,	mid('abcdef')	evaluates	to	'cd'	and	mid('abcde')	
evaluates	to	'c'.	Program	test05.py	makes	two	invocations	of	function	mid()	and	produces	output	

	
	

cd
c
	

	

	

6. (11	 points)	 Develop	 a	 module	 q06.py.	 The	 module	 defines	 a	 function	 loners()	 that	 takes	 a	 single	 list	
parameter	x.		
• loners(s)

The	function	returns	a	new	list	composed	of	all	the	items	appearing	in	x	exactly	once.	For	example,	
loners([8, 9, 2, 1, 1, 0, 6, 2])	evaluates	to	[8, 9, 0, 6].	Program	test06.py	makes	three	
invocations	of	function	loners()	and	produces	output	

	
	

[0, 6]
	

[8, 9, 0, 6]
	

['e', 'd']
	

	

	 	

CS	1112	Test	3	 	 Spring	2017	

 Page 3 of 6

7. (12	points)	Develop	a	module	q07.py.	The	module	defines	a	function	hangman()	that	takes	two	parameters,	
a	string	s	and	a	list	of	individual	characters	c.	

• hangman(s, c)
The	function	returns	a	new	string	whose	value	is	related	to	s.	The	new	string	leaves	all	copies	of	the	
characters	 in	 c	 alone,	 and	 replaces	 all	 of	 the	 other	 characters	 with	 underscores.	 For	 example,	
hangman('hello', ['l', 'a', 'h',])	evaluates	to	'h_ll_'.	Program	test07.py	makes	three	
invocations	of	function	hangman()	and	produces	output	

	 	
	

h_ll_
	

_ig___

8. (10	 points)	 Develop	 a	 module	 q08.py.	 The	 module	 defines	 a	 function	 build()	 that	 takes	 a	 single	 list	
parameter	x.		
• build(x)

The	function	returns	a	new	dict.	The	keys	for	the	new	mappings	are	the	item	values	in	x,	the	value	
of	a	key	is	the	number	of	times	it	occurs	in	x.	For	example,	counts([8, 9, 2, 1, 1, 0, 6, 2])	
evaluates	to	{0: 1, 1: 2, 2: 2, 6: 1, 8: 1, 9: 1}.	Program	test08.py	makes	three	invocations	of	
function	build()	and	produces	the	below	output.	Be	aware	that	your	output	may	list	the	mappings	
in	a	different	order.	

	
	

{0: 1, 2: 3, 3: 5, 4: 2, 6: 1, 9: 3}
	

{0: 1, 1: 2, 2: 2, 6: 1, 8: 1, 9: 1}
	

{'d': 1, 'b': 2, 'a': 3, 'e': 1, 'c': 2}
	

	
	

9. (10	 points)	 Develop	 a	 module	 q09.py	 that	 defines	 two	 functions	 scrub()	 and	 decode().	 The	 functions	
support	 a	 very	 simple	 version	 of	 steganography	 (i.e.,	 hiding	 a	 message	 in	 something	 non-secret	 (e.g.,	 a	
picture).	Both	functions	have	three	parameters	original,	c,	and	d,	where	original	is	an	Image,	and	c	and	
d	are	RGB	colors	(i.e.,	3-tuples).		
• scrub(original, c, d)

Returns	a	new	copy	of	original	where	all	occurrences	of	c	in	original	are	replaced	with	d	in	the	copy.	
	

• decode(original, c, d)
Returns	a	new	copy	of	original	where	all	pixels	in	original	not	equal	to	c	are	replaced	with	d	in	the	
copy.		

	

Program	test09.py	tests	function	scrub()	and	decode()	and	should	produce	output			
	

	

scrub() passed test
	

decode() passed test
	

	

A	successful	decode()	should	also	produce	a	decoding	of	the	rotunda		that	contains	the	following	sub-image	

CS	1112	Test	3	 	 Spring	2017	

 Page 4 of 6

	
	

	
	

10. (10	points)	Develop	a	module	q10.py	that	defines	an	image	producing	function	symmetric().		
• symmetric(original)

Returns	a	new	copy	of	original	where	the	left-half	matches	original	and	the	right-half	is	a	reverse	of	
the	left-half.		

	

Program	test10.py	tests	function	symmetric ()	and	should	produce	output		
	

	

symmetric() passed test
	

	

A	successful	symmetric()	should	also	produce	the	image		

	

	

11. 	(12	points)	Develop	a	module	q11.py	that	implements	a	version	of	the	game	marbles.	This	two-person	game	
starts	off	with	n	marbles	being	available.	The	players	alternate	turns.	On	a	turn,	a	player	must	remove	at	least	
one	marble,	but	no	more	than	half	of	the	remaining	marbles.	The	player	who	removes	the	last	marble	loses.	
Our	version	of	the	game	will	have	the	“computer”	play	against	a	person.	To	support	the	game	the	following	
functions	are	to	be	implemented.	
• over(n)

Returns	True	if	n	equals	1;	otherwise,	returns	False.	
	

• computer(n)
Returns	the	number	of	marbles	 the	computer	 takes	 for	 its	move.	The	amount	 is	 randomly	chosen	
from	the	inclusive	range	1	through	n	/	/	2.	

	

• legal(n, m)
If	m	is	a	legal	amount	to	take,	the	function	returns	True;	otherwise,	the	function	returns	False.	

	

• player(n, m)
If	m	is	a	legal	amount	to	take,	the	function	returns	m;	otherwise,	the	function	returns	0.	

	

Program	test11.py	makes	use	of	a	function	run()	that	plays	the	game.		The	following	is	a	sample	program	
interaction	(since	the	computer	plays	randomly,	your	game	may	different).	
	

CS	1112	Test	3	 	 Spring	2017	

 Page 5 of 6

	

There are 16 marbles
	

How many marbles should be removed: 0
	

Invalid move, try again: 9
	

Invalid move, try again: 8
	

There are 8 marbles left
	

I take 3 marbles
	

There are 5 marbles left
	

How many marbles should be removed: 2
	

There are 3 marbles left
	

I take 1 marbles
	

There are 2 marbles left
	

How many marbles should be removed: 1
	

There are 1 marbles left
	

You win
	

	
	

12. (9	 points)	 Develop	 a	module	q12.py.	 The	module	 has	 three	 functions	distance	 and	adjacent().	 Both	
functions	take	four	integer	parameters	x1,	y1,	x2,	and	y2.	
• distance(x1, y1, x2, y2)

Returns	the	Euclidian	distance	between	(x1, y1)	and	(x2, y2).	The	Euclidean	distance	formula	is	
	

(𝑥1 − 𝑥2)' + (𝑦1 − 𝑦2)'	
	

• adjacent(x1, y1, x2, y2)
Returns	whether	the	distance	between	(x1, y1)	and	(x2, y2)	equals	1.	

	

Program	test12.py	invokes	each	of	the	three	functions	on	the	locations	(3,	1)	and	(4,	1),	(1,	5)	and	(6,	9),	and	
(5,	5)	and	(5,	5).	The	program	produces	the	below	output.	

	
	

1.0
2.8284271247461903
3.605551275463989
	

True
False
False
	

	

13. (12	 points)	 Develop	 a	 module	 q13.py	 that	 accesses	 a	 datasheet.	 The	 module	 defines	 two	 functions	
frequent()	and	indices().	

• frequent(d, c)
Returns	the	most	frequently	occurring	value	in	column	c	of	datasheet	d.	

	

CS	1112	Test	3	 	 Spring	2017	

 Page 6 of 6

• indices(d, c, v)
Return	the	indices	of	the	rows	in	the	datasheet	d	whose	column	c	values	equal	v.	

	

Program	test11.py	invokes	both	of	the	functions	and	produces	output.	
	

	

Quitman
[11, 19, 27, 30, 35, 46]

	

FYI,	program	test13.py	uses	the	functions	to	analyze	a	dataset	of	USA	locations	starting	with	the	letter	Q	to	
determine	the	town	name	starting	with	Q	that	occurs	most	frequently	across	the	USA	(i.e.,	Quincy).	The	tester	
gets	the	datasheet	from	the	CSV	file		

	

www.cs.virginia.edu/~cs1112/datasets/csv/q.csv
	

The	first	six	rows	in	the	places	datasheet	are	given	below	(a	different	dataset	will	be	used	during	grading).		
	

['Quimby', 'IA']
['Quinebaug', 'CT']
['Quinton', 'NJ']
['Quebradillas', 'PR']
['Quinault', 'WA']
['Quantico', 'MD']

