
COMPUTING ID _____________________________ PRINT NAME LEGIBLY: ___

Fall 2021 Test 2 Page 1 of 3

Read this entire page. You are responsible knowing what it says.

Honor code
• By submitting solutions for this test, you are agreeing that

o You neither given nor received help directly or indirectly to or from anyone else.

o You did not directly or indirectly use materials from non-allowed sources.

Important
• You must use our files when coding.

• None of your code should get input or produce output.

• Do not access past code or algorithms (yours, ours, or anyone else’s).

• Do not access class notes, epistles, examples, artifacts, solutions on the web, or your own past
assignments.

• Class personnel cannot help you debug your answers.

• Comment out or delete all debugging statements before submitting.

• Whether code is testable is important.

• The only device you may access during the exam is your laptop. The only open windows allowed
are PyCharm and a browser with tabs linked from the class website.

• During the test you can access the course module descriptions and the course Python
information sheet.

• You are responsible for submitting for your work, so check before leaving the test. Do not
submit once the test is over.

• Code should follow class programming practices, e.g., whitespace, identifier naming, etc.

• Because the solutions are all short, commenting is not necessary.

• You might add comments if you were unable to complete a problem and want to explain what
you were attempting to do.

Programming

1. Implement module iam.py. The module defines a single function honorable(). The function has
no parameters. If you completed the test in a completely honorable manner, the function should
return the lower-case string "yes"; otherwise, the function should return the string "no".

The expected output of the built-in tester is the following.

honorable(): yes

COMPUTING ID _____________________________ PRINT NAME LEGIBLY: ___

Fall 2021 Test 2 Page 2 of 3

2. Implement module calc.py. The module defines a function btog(). The function has a single
numeric parameter named b. The value of the parameter specifies the number of barrels of interest.
The function returns the equivalent number of gallons. Note, there are 42 gallons per barrel.

The built-in tester should produce the following output.

btog(2): 84
btog(3): 126
btog(5): 210

3. Implement module accum.py. The module defines a function ulate(). The function has a single
numeric list parameter named items. The function accumulates a total based on the elements of
items. If an element of items is negative it is added to the accumulation. If an element of items is
positive, the element is subtracted from the accumulation.

The built-in tester defines three lists.

test1 = [2, -10, 2, -6, -12]
test2 = [-15, 0, 13, -5, -5, 6, -14, 10, -7, -5, 10]
test3 = [11, 10, -7, 12, -8, -8, 10, -6, 15]

The built-in tester should produce the following output.

ulate(test1): -32
ulate(test2): -90
ulate(test3): -87

4. Implement module counts.py. The module defines a function cmp(). The function has a single
numeric list parameter named items. The function returns an integer list with three elements. The
first element is the number of negative elements in items; the second element is the number of
zero-valued elements in items; and the third element is the number of positive elements in items.

The built-in tester defines three lists.

test1 = [2, -10, 2, -6, -12]
test2 = [-15, 0, 13, -5, -5, 6, -14, 10, -7, -5, 10]
test3 = [11, 10, -7, 12, -8, -8, 10, -6, 15]

The built-in tester should produce the following output.

cmp(test1): [3, 0, 2]
cmp(test2): [6, 1, 4]
cmp(test3): [4, 0, 5]

5. Implement module dracula.py. The module defines a function build(). The function has a single
list parameter named items. The function returns a new dictionary. The keys of the new dictionary
are the elements of items. In the new dictionary, an element from items maps to the number of
the times the element is in items.

COMPUTING ID _____________________________ PRINT NAME LEGIBLY: ___

Fall 2021 Test 2 Page 3 of 3

The built-in tester defines three lists.

test1 = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
test2 = []
test3 = ['p', 'e', 'o', 'p', 'l', 'e']

The built-in tester should produce the following output.

build(test1): {3: 2, 1: 2, 4: 1, 5: 3, 9: 1, 2: 1, 6: 1}
build(test2): {}
build(test3): {'p': 2, 'e': 2, 'o': 1, 'l': 1}]

Note: because Python dictionaries are not ordered lists. It is possible the tester output of the
mappings in your dictionary can appear in a different order.

6. Implement module slide.py. The module defines a function skew(). The function has a single pixel
parameter named p. The function returns a new pixel. Suppose r, g, and b are respectively, the RGB
components of p.

• If r equals the maximum of the RGB values of p, the function returns (r, 0, 0).

• Otherwise, if g equals the maximum of the RGB values of p, the function returns (0, g, 0).

• Otherwise, the function returns (0, 0, b).

The built-in tester should produce the following image.

7. Implement module sub.py. The module defines a function tract(). The function has two strings
parameters named s1 and s2. The function returns a new string. The new string is composed of
one occurrence of each character in s1 that is not part of s2. The built-in tester should produce the
following output.

tract(banana, apple): bn
tract(explanation, planet): xio
tract(kiwi, orange): kiw

	Read this entire page. You are responsible knowing what it says.
	Honor code
	Important
	Programming

