
CS 1112 Spring 2019 Test 3

Page 1 of 6

Ever so clearly print your email id:

Ever so clearly print your name:

True or False: I verified my solutions have been uploaded.

The number of questions I have asked or answered to the instructor during class is

• None

• 1 – 3

• 4 – 6

• 7 – 9

• 10 or more

Pledge:

Test rules
• Before you leave the room, check that you uploaded all thirteen of your solutions. Do not ask afterwards

whether you can submit a forgotten solution.

• This pledged exam is closed notes. The only device you may access during the exam is your laptop.

• Any cheating can result in failing the class and the incident being referred to the Honor Committee.

• You may not access class examples, artifacts, solutions on the web, or your own past assignments during the
test; that is, the only code you may access or view are ones that you develop for this test.

• The only windows allowed on your laptop are PyCharm and a single browser with tabs reachable from class
website.

• Programs and modules should follow class programming practices; e.g., whitespace, identifier naming, and
commenting if you think it is needed, etc.

• Whether a program is runnable or a module is testable is important.

• You must comment out or delete all debugging print() statements before submitting

Problem set

1. Implement program whoami.py . The program prints your University of Virginia email id and nothing else.
For example, if your email id was mst3k, the program should produce the following output.

mst3k

2. Implement program drops.py . The program prompts its user for the number of gallons of interest. The
program computes and then prints the number of drops of water for the indicated amount. There should
be no other output. For your calculation, assume there are 90,922 drops of water per gallon. Your program
should define a constant for number of drops of water per gallon.

Jim Cohoon

CS 1112 Spring 2019 Test 3

Page 2 of 6

Three possible program runs follow (FYI: a standard bathtub can hold eighty gallons of water, and
93701099000000000000000000000 is an estimate of the number of gallons of water in the Atlantic ocean)

Enter number of gallons: 1
90922

Enter number of gallons: 80
7273760

Enter number of gallons: 93701099000000000000000000000
8519491323278000000000000000000000

3. Implement program mediate.py . The program prompts its user for five strings. For the five strings, the
program prints the one that comes in the middle alphabetically. There should be no other output.

Three possible program runs follow.

Enter five strings: aaaa ddd b cc eee
cc

Enter five strings: fff hhh jjj iii ggg
hhh

Enter five strings: k l n o m
m

4. Implement program asterisk.py . The program prompts its user for integers. The program prints the
product of the inputs. There should be no other output.

Three possible program runs follow.

Enter integers: 3 1 4 1 5 9
540

Enter integers: 1 2 3 4 5
120

Enter integers: 2 4 6 8 10 12 14 16
10321920

5. Implement module human.py . The module defines a function label(). Function label() has one integer
parameter n. Parameter n is an age of a person in years. The function returns a string classifying that age
according to the following:

• 0 – 17: Gen-Z

• 18 – 34: Millennial

• 35 – 50: Gen-X

• 51 – 70: Boomer

• 71 or greater: Gen-S

The function already provides the following constant definitions.

CS 1112 Spring 2019 Test 3

Page 3 of 6

 LABEL_Z = "Gen-Z" # between 0 - 17 years old
 LABEL_M = "Millennial" # between 18 - 34 years old
 LABEL_X = "Gen-X" # between 35 - 50 years old
 LABEL_B = "Boomer" # between 51 – 70 years old
 LABEL_S = "Gen-S" # 71 years old or greater

The built-in tester should produce the following output.

label(17): Gen-Z
label(33): Millennial
label(48): Gen-X
label(65): Boomer
label(88): Gen-S

6. Implement module wed.py . The module defines a functions ding(). Function ding() has two list parameters
x and y. The elements in x and y are all of the same type (e.g., all numeric or all strings). The function returns
a new list whose elements are a sorted version of the union of x and y.

The built-in tester makes use of the following definitions.

 x1 = [2, 1, 1, 1]; x2 = ['p', 'i', 'n', 'k', 'y',]
 y1 = [1, 6, 2, 5, 4]; y2 = ['t', 'o', 'e',]

The built-in tester should produce the following output.

ding(x1, y1): [1, 1, 1, 1, 2, 2, 4, 5, 6]
ding(x2, y2): ['e', 'i', 'k', 'n', 'o', 'p', 't', 'y']

7. Implement module determine.py. The module defines two functions factorial() and combinations().

Function factorial() has a single integer parameter n. The function returns the integer product of the integer
1 through n; that is, 1 x 2 x 3 x ... x n. FYI: mathematicians denote this product as n!.

The built-in tester should produce the following output.

5!: 120
6!: 720
10!: 3628800

Function combinations() has two integer parameter n and k. The function returns as an integer, the
number of possible combinations (ways) of choosing k things from a set of n things. The number of
combinations equals

𝑛!
𝑘! 	 ∙ (𝑛 − 𝑘)!

The built-in tester should produce the following output.

combinations(5 , 2): 10
combinations(6 , 4): 15
combinations(10 , 6): 210

8. Implement module valuable.py . The module defines two functions count() and is_unique().

CS 1112 Spring 2019 Test 3

Page 4 of 6

Function count() has parameters v and d, where v is an arbitrary value and d is a dictionary. The function
returns the number of keys in dictionary d whose value is v. Be aware that d.values(), the collection of values
for d, is not a list. As such, there is no count() function for d.values(). However, a list version can be gotten
with the expression list(d.values()).

The built-in tester makes use of the following definitions.

 d1 = { 3: 1, 4: 1, 5: 9 }
 d2 = { 'f': 'a', 'c': 'e', 'i': 'o', 'u': 's' }

The built-in tester should produce the following output.

count(d1, 1): 2
count(d1, 2): 0
count(d2, "a"): 1
count(d2, "e"): 1

Function is_unique() has a single dictionary parameter d. The function returns whether each of the values
in d.values() occurs exactly once. If so, the function returns the logical literal True; otherwise, the function
returns the logical literal False.

The built-in tester again makes use of the following definitions.

 d1 = { 3: 1, 4: 1, 5: 9 }
 d2 = { 'f': 'a', 'c': 'e', 'i': 'o', 'u': 's' }

The built-in tester should produce the following output.

is_unique(d1): False
is_unique(d2): True

9. Implement module rolling.py . The module defines a function sixes(). Function sixes() does not take any
parameters. The function simulates the repeated rolling of a six-sided die whose sides are numbered 1
through 6. The rolling is repeated until a second 6 comes up. The function returns the list of rolls made
including the second 6. Because the number of needed rolls is unknown, a while loop should be used.

Important: the function does not use random.seed(). The seed is set by the built-in tester. The tester should
produce the following output.

sixes(): [5, 4, 6, 3, 3, 2, 3, 1, 2, 1, 6]
sixes(): [2, 5, 1, 3, 1, 4, 4, 4, 6, 4, 2, 1, 4, 1, 4, 4, 5, 1, 6]
sixes(): [1, 1, 1, 3, 2, 6, 6]

10. Implement module look.py . The module defines two functions composed() and which().

Function composed () has two string parameters letters and word. The function returns the logical literal
True if the characters making up word are composed exclusively of the characters making up letters
(repetition is allowed); otherwise, the function returns the logical literal False.

The built-in tester should produce the following output.

composed("arst", "rat"): True
composed("arst", "strata"): True
composed("cab", "bad"): False

CS 1112 Spring 2019 Test 3

Page 5 of 6

Function which () has a string parameter letters and a list of strings parameter words. The function returns
which elements of the words are composed exclusively of the characters making up letters.

The built-in tester makes use of the following definition.

strings = ['bc', 'cc', 'bab', 'cad', 'bit', 'cab']
The built-in tester should produce the following output.

which("abct", strings): ['bc', 'cc', 'bab', 'cab']

11. Implement module euclid.py . The module defines three functions pair(), series(), and perimeter().

Function pair () has two coordinate parameters p1 and p2. The function returns the Euclidean distance
between points p1 and p2. Suppose p1 equals (x1, y1) and p2 equals (x2, y2), then the Euclidean distance
between p1 and p2 is

)(𝑥1 − 𝑥2)- + (𝑦1 − 𝑦2)-

FYI: math module function math.sqrt() should prove helpful. The built-in tester should produce the following
output.

pair((9, 4), (6, 1)): 4.242640687119285
pair((3, 5), (7, 5)): 4.0
pair((7, 2), (9, 2)): 2.0

Function series () has a list parameter spots of coordinates. The function returns the distance traveling
from spots[0] to spots[1], and from there to spots[2], and from there to spots[3], ... and ending up at
spots[n-1], where n is the length of spots.

The built-in tester makes use of the following definition.

coordinates = [(9, 4), (6, 1), (3, 5), (7, 5), (7, 2), (9, 2)]
The built-in tester should produce the following output.

series(coordinates): 18.242640687119284

Function perimeter () also has a list parameter spots of coordinates. The function returns the distance
traveling from spots[0] to spots[1], and from there to spots[2], and from there to spots[3], ... from there to
spots[n-1], and from there back to spots[0], where n is the length of spots.

The built-in tester also makes use of the following definition.

coordinates = [(9, 4), (6, 1), (3, 5), (7, 5), (7, 2), (9, 2)]
The built-in tester should produce the following output.

perimeter(coordinates): 20.242640687119284

12. Implement module datable.py . The module defines two functions flatten() and similar().

Function flatten() has a single dataset parameter d. The function returns a simple list whose elements are
the elements of first row of dataset d, followed by the elements of the second row of the dataset, followed
by the elements of the third row of the dataset, and so on.

The built-in tester makes use of the following definitions.

CS 1112 Spring 2019 Test 3

Page 6 of 6

d1 = [[31, 28, 31, 30], [31, 30, 31, 31], [30, 31, 30, 31]]
d2 = [[1, 1, 2, 3], [5, 8, 13, 21], [34, 55, 89, 144], [233, 377, 610]]

The built-in tester should produce the following output.

flatten(d1): [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
flatten(d2): [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]

Function similar() has two dataset parameters d1 and d2. The function returns whether datasets d1 and d2
have equivalent flattenings. If the flattenings are the same, the function returns the logical literal True;
otherwise, the function returns the logical literal False.

The built-in tester makes use of the following definitions.

a1 = [[31, 28, 31, 30], [31, 30, 31, 31], [30, 31, 30, 31]]
b1 = [[31, 28, 31, 30, 31, 30, 31, 31, 30], [31, 30, 31]]

a2 = [[1, 1, 2, 3], [5, 8, 13, 21], [34, 55, 89, 144], [233, 377, 610, 987]]
b2 = [[1, 2, 3, 4], [5, 8, 13], [34, 55, 89], [233, 377, 610, 987]]

The built-in tester should produce the following output.

similar(a1, b1): True
similar(a2, b2): False

13. Implement module pixie.py . The module defines two functions max_rgb() and tricolor().

Function max_rgb() has a single parameter pixel, which is a 3-tuple with values between 0 and 255.
Suppose pixel equals (r, g, b). If r equals the max of the three values, the function returns (r, 0, 0). If instead
g equals the max of the three values, the function returns (0, g, 0). Otherwise, the function returns (0, 0, b).

The built-in tester runs three tests using pixel colors

 p1 = (80,75,70); p2 = (80,95,70); p3 = (80,75,99)

The tester should produce the following output.

max_rgb(p1): (80, 0, 0)
max_rgb(p2): (0, 95, 0)
max_rgb(p3): (0, 0, 99)

Function tricolor() has a single parameter original, which is a PIL Image. The function returns a new
image with the same dimensions as original. The pixels in the new image are variations of the corresponding
pixels in original. The variation is gotten using function max_rgb().

The built-in tester uses an image looking like www.cs.virginia.edu/~cs1112/images/pre-tricolor.png as the
original, and shows an image equal to the one at www.cs.virginia.edu/~cs1112/images/post-tricolor.png.
The true coloring of the two images are on the class web page.

