
CS	1112	Fall	2020	Test	3	
	

Page 1 of 6	

Read this entire page. You are responsible knowing what it says.

Honor
• By	submitting	solutions	for	this	test,	you	are	agreeing	that	

o You	neither	given	nor	received	help	directly	or	indirectly	to	or	from	anyone	else;	
o You	did	not	directly	or	indirectly	use	materials	from	non-allowed	sources.	

Important
• You	must	use	our	files	when	coding.	
• The	WWHAD	strategy	(what	would	a	human	do	strategy)	should	serve	you	well.	

• During	the	test	you	may	not	access	past	code	or	algorithms	(yours,	ours,	or	anyone	else’s).	

• During	the	test	you	may	not	access	class	notes,	epistles,	examples,	artifacts,	solutions	on	the	web,	or	
your	own	past	assignments	during	the	test.	

• Class	personnel	cannot	help	you	debug	your	answers.	

• All	functions	make	use	of	tester	module	etester.py.		

• None	of	your	functions	should	modify	any	list	or	dataset	parameters.		

• None	of	your	functions	should	print	or	get	input.		

• Comment	out	or	delete	all	debugging	print()	statements	before	submitting.	

• Whether	 code	 is	 testable	 is	 important.	 Every	 function	 needs	 to	 have	 at	 least	 one	 uncommented	
statement.	

• None	of	the	testing	code	should	be	modified.	

• The	only	device	you	may	access	during	the	exam	is	your	laptop.	The	only	open	windows	allowed	are	
PyCharm	and	a	browser	with	tabs	linked	from	the	class	website.	

• During	the	test	you	can	access	the	course	module	descriptions	and	the	course	Python	information	sheet.		

• You	are	responsible	for	submitting	for	your	work,	so	check	before	exiting	the	testing.	Late	submissions	
will	not	be	graded,		so	do	not	submit	once	your	testing	time	is	up.	

• Code	should	follow	class	programming	practices;	e.g.,	whitespace,	identifier	naming,	etc.	

• Because	the	problems	are	short,	commenting	is	not	necessary.		

• You	might	add	comments	if	you	were	unable	to	complete	a	problem	and	want	to	explain	what	you	were	
attempting	to	do.	

	 	

CS	1112	Fall	2020	Test	3	
	

Page 2 of 6	

Problems
	

1. Implement	a	program	diff.py.	The	program	does	not	define	any	functions.	The	program	prompts	
its	user	for	text.	The	program	prints	either	literal	True	or	False	depending	whether	the	words	in	
the	text	are	all	different.	Word	comparison	ignores	case;	e.g.,	"Love"	and	"love"	are	the	same.	

Some	possible	program	runs	are	
	

	

Enter words: love is all you need
True

	

Enter words: a b c B
False

	
	

Enter words: A b a
False

	
2. Implement	module	verify.py.	The	module	defines	a	function	bi()	with	a	dictionary	parameter	d.		

Function	bi()	returns	one	of	 logical	 literals	True	or	False	depending	whether	dictionary	d	 is	a	
bijection.	A	dictionary	is	a	bijection	if	no	two	keys	in	the	dictionary	map	to	the	same	value;	that	is,	
every	key	maps	to	a	distinct	value.	

The	built-in	tester	for	the	module	makes	use	of	the	following	dictionaries.	

d1 = { 0: "zero", 1: 2, "a": "b", True: False }
d2 = { 1: 2, "a": "vowel", "e": vowel }
d3 = { 1: 1 }
d4 = { }

	

And	should	produce	the	following	output.		

bi(d1): True
bi(d2): False
bi(d3): True
bi(d4): True

	
3. Implement	module	fun.py.	The	module	defines	a	function	anagram().	Function	anagram()	has	two	

string	parameters	s	and	t.	

Function	anagram()	returns	whether	s	and	t	are	anagrams	of	each	other.	String	s	is	an	anagram	of	
string	t,	if	s	is	a	rearrangement	of	the	letters	of	t.	

The	built-in	tester	should	produce	the	following	output.		
	

anagram(listen, silent): True
anagram(love, evil): False

CS	1112	Fall	2020	Test	3	
	

Page 3 of 6	

4. Implement	module	factoring.py.	The	module	defines	a	function	common().	Function	common()	has	
two	integer	parameters	x	and	y.		

The	function	returns	a	list	of	the	proper	factors	common	to	both	x	and	y.		

The	factors	of	a	number	n	are	those	integers	that	produce	a	remainder	of	zero	when	they	divide	
into	n	 (e.g.,	 	5	 is	a	 factor	of	10	because	10	divided	by	2	has	remainder	0,	3	 is	not	a	 factor	of	10	
because	10	divided	by	3	has	remainder	1).		

A	factor	of	n	is	a	proper	factor	if	it	is	neither	1	nor	n	(e.g.,	the	proper	factors	of	10	are	2	and	5).	

The	built-in	tester	should	produce	the	following	output.		
	

	

common(2, 4) = []
common(4, 4) = [2]
common(18, 6) = [2, 3]
common(40, 80) = [2, 4, 5, 8, 10, 20]
common(90, 100) = [2, 5, 10]
	

	
	

5. Implement	module	rolling.py.	The	module	defines	a	function	six().	Function	six()	does	not	take	any	
parameters.	 The	 function	 simulates	 the	 repeated	 rolling	 of	 a	 six-sided	 die	 whose	 sides	 are	
numbered	1	through	6.	The	simulated	rolling	is	repeated	until	a	second	6	comes	up.		

The	function	returns	the	list	of	rolls	made	including	the	second	6.	Because	the	number	of	needed	
rolls	 is	 unknown,	 a	 while	 loop	 needs	 to	 be	 used.	 Important:	 the	 function	 does	 not	 use	
random.seed()	(the	seed	is	set	by	the	built-in	tester).		

The	built-in	tester	should	produce	the	following	output.		
	

sixes(): [5, 4, 6, 3, 3, 2, 3, 1, 2, 1, 6]
sixes(): [2, 5, 1, 3, 1, 4, 4, 4, 6, 4, 2, 1, 4, 1, 4, 4, 5, 1, 6]
sixes(): [1, 1, 1, 3, 2, 6, 6]
	

	
6. 	Implement	module	nucleotide.py.		There	are	four	kinds	of	nucleotide	molecules	–	adenine,	cytosine,	

guanine,	and	thymine.	They	are	commonly	referred	to	respectively	as	A,	C,	G,	and	T.	Nucleotides	A	
and	T	are	complementary	molecules,	nucleotides	C	and	G	are	also	complementary	molecules.	

The	module	defines	functions	extract(),	snip(),	and	complement().	They	all	deal	with	nucleotides,	
where	nucleotides	are	represented	in	uppercase	string	format	(i.e.,	'A',	'C',	'G',	or	'T').	

Function	extract()	has	three	parameters	ns,	a,	and	b,	where	ns	is	a	string	of	nucleotides,	and	a	and	
b	are	indices.	The	function	returns	a	new	string	of	nucleotides	that	is	equal	to	the	nucleotides	of	ns	
from	indices	a	through	b–1.	Assume	that	a	≤	b.	

Function	snip()	has	three	parameters	ns,	a,	and	b,	where	ns	is	a	string	of	nucleotides,	and	a	and	b	
are	 indices.	 The	 function	 returns	 a	 new	 string	 of	 nucleotides	 that	 is	 equal	 to	 ns	 without	 its	
nucleotides	at	indices	a	through	b–1	inclusively.	Assume	that	a	≤	b.	

	

CS	1112	Fall	2020	Test	3	
	

Page 4 of 6	

Function	complement	()	has	a	parameter	ns,	where	ns	is	a	string	of	nucleotides.	The	function	returns	
a	 string	 of	 nucleotides,	 each	 of	whose	 nucleotides	 is	 the	 complement	 of	 the	 corresponding	ns	
nucleotide.	

The	built-in	tester	makes	use	of	the	following	nucleotide	strings.	

S1 = 'ACAGTCT'
S2 = 'ACCAACCCCGG'
S3 = 'TGAGTCCGAGGAGA'
S4 = 'GGGTGCTTCAGAG

	

And	should	produce	the	following	output.		
	

Test extract () yes or no? yes

extract(S1, 0, 3): ACA
extract(S2, 1, 4): CCA
extract(S3, 5, 9): CCGA
extract(S4, 2, 8): GTGCTT

Test snip() yes or no? yes

snip(S1, 0, 3): GTCT
snip(S2, 1, 4): AACCCCGG
snip(S3, 5, 9): TGAGTGGAGA
snip(S4, 2, 8): GGCAGAG

Test complement() yes or no? yes

complement(S1): TGTCAGA
complement(S2): TGGTTGGGGCC
complement(S3): ACTCAGGCTCCTCT
complement(S4): CCCACGAAGTCTC
	

7. Implement	 module	mm.py.	 	 The	 module	 defines	 a	 function	 two().	 The	 function	 has	 a	 dataset	

parameter	d.	

The	function	returns	a	two-element	list.	The	first	element	is	the	minimum	value	in	the	data	set;	the	
second	element	is	the	maximum	value	in	the	data	set.	

The	built-in	tester	makes	use	of	the	following	datasets.	

	 	 d1 = [[2, 1]]
d2 = [["s", "i", "n", "g"], ["v", "i", "e"], ["d", "o"]]
d3 = [[3, 1, 4], [1, 5, 9, 2], [6], [8], [10], [-10]]	

	

And	should	produce	the	following	output.		
	

two(d1): [1, 2]
two(d2): ['d', 'v']
two(d3): [-10, 10]

	 	

CS	1112	Fall	2020	Test	3	
	

Page 5 of 6	

8. Implement	module	double_vision.py.	The	module	defines	a	function	locate().	Function	locate()	has	
two	parameters	spot	and	original,	where	spot	is	a	coordinate	and	original	is	an	Image.		

If	spot	lies	on	the	lefthand	side	of	original,	then	the	function	returns	spot.	Otherwise,	the	function	
returns	the	reflection	location	of	spot	with	respect	to	the	center	vertical	axis	of	original.		

	
The	built-in	tester	should	produce	the	following	images.	

	 	
	
	

9. Implement	module	tweak.py.	The	module	defines	a	function	rgb()	with	a	pixel	parameter	p.		

The	function	returns	a	new	pixel.	The	color	of	the	new	pixel	depends	upon	the	(r,		g,	b)	values	of	p.		
	

• The	result	is	(r,	0,	0),	if	r	is	equal	to	the	maximum	of	r,	g,	and	b.		

• If	instead	g	is	equal	to	the	maximum	of	g	and	b,	the	result	is	(0,	g,	0).		

• Otherwise	the	result	is	(0,	0,	b).	
	

CS	1112	Fall	2020	Test	3	
	

Page 6 of 6	

The	built-in	tester	should	produce	the	following	images.	

	

	 	

10. Implement	module	 smallest().	 	The	module	defines	a	 function	 second().	 	The	 function	has	a	 list	

parameter	x.		The	elements	of	x	will	be	either	be	all	strings	or	all	numbers.	Important:	the	function	
does	not	change	x.		So,	if	you	need	to	make	modifications,	do	it	on	a	copy.	

The	function	returns	the	second	smallest	value	in	list	x.	Note,	if	the	smallest	value	occurs	more	than	
once	in	x,	then	the	second	smallest	value	is	the	same	as	the	smallest	value.	

The	built-in	tester	makes	use	of	the	following	lists.	

	 	 x1 = [31, 4, 15, 9, 25]
x2 = [10, 20, 10]
x3 = ["love", "is", "all", "you", "need"]
x4 = ["i", "am", "the", "walrus", "i", "am", "the", "walrus"]
x5 = [-31.25, -62.5, -125.0, -250.0, -500.0, -1000.0]	

	

And	produces	the	following	output.		
	

second(x1): 9
second(x2): 10
second(x3): is
second(x4): am
second(x5): -500.0
	

	

	

