Name:

E-mail ID:

On my honor, I pledge that I have neither given nor received help on this test.

Signature:

Test rules

- Print your name, id, and pledge as requested.
- This pledged exam is closed textbook. The only device you may access during the test is your own laptop.
- You are not allowed to access class examples or your own past assignments during the test; i.e., the only Python code you may access or view are ones that you develop for this test.
- The only windows that can be open on your computer are PyCharm and a single browser with tabs only open to the class website.
- PyCharm can be used only for developing the Python files to be submitted. It cannot be used for the true-false and short answer questions.
- Code should compile and demonstrate proper programming style; e.g., header comments, whitespace, identifier naming, etc.
1. (9 points) Consider the following code segment. In answering the below true and false questions.

```python
1: def f(x):
2:    y = x + x
3:    a = y
4:    print(y)
5:
6: def g():
7:    return 1
8:    return 2
9:
10: a = 2
11: b = f(a)
12: print(a)
13: c = g()
14: print(f.y)
```

a. True or false: \(y \) is a variable local to function \(f \).

b. True or false: \(y \) is the return value for function \(f \).

c. True or false: in line 1, \(x \) is used as an argument.

d. True or false: in line 2, \(x + x \) is an invocation.

e. True or false: lines 3 and 10 reference the same variable \(a \).

f. True or false: in line 11, \(a \) is used as an argument.

g. True or false: in line 12, \(\text{print}(a) \) is an invocation.

h. True or false: in line 13, \(c \) is initialized to 1.

i. True or false: in line 14, 4 is printed.
2. (6 points) Suppose the following five function definitions are in effect

```python
def e(x):
    x = 3
    return e(x)

def f(x):
    x.append(3)
y = [x]
f(y)

def g(x):
    y = x
    y.append(3)
```

a. What is the output of the following code segment?
```python
a = 1
e(a)
print(a)
```

b. What is the output of the following code segment?
```python
x = 1
e(x)
print(x)
```

c. What is the output of the following code segment?
```python
a = []
f(a)
print(a)
```

d. What is the output of the following code segment?
```python
a = []
g(a)
print(a)
```

e. What is the output of the following code segment?
```python
a = 1
b = h(3)
print(b)
```

f. What is the output of the following code segment?
```python
a = [1, 2]
b = j(a)
print(b)
```
3. (2 points) What should the comment be for describing function \(f() \) with its numeric parameters \(x, y, \) and \(z \)?

```python
def f( x, y, z ) :
    b1 = x ! = y
    b2 = x ! = z
    b3 = y ! = z
    b = b1 and b2 and b3
    return b
```

4. (2 points) What should the comment be for describing function \(f() \) with its nonempty numeric list parameter \(x \)?

```python
def f( x ) :
    for v in x :
        if ( v % 2 == 0 ) :
            return True
    return False
```

5. (2 points) What should the comment be for describing function \(f() \) with its nonempty numeric list parameter \(x \)?

```python
def f( x ) :
    for v in x :
        if ( v % 2 != 0 ) :
            return False
    return True
```

6. (2 points) What should the comment be for describing function \(f() \) with its nonempty numeric list parameter \(x \)?

```python
def f( x ) :
    m1 = min( x )
    m2 = max( x )
    b = ( m1 == m2 )
    return b
```

7. (2 points) What should the comment be for describing function \(f() \) with its nonempty numeric list parameter \(x \) and its numeric parameter \(k \)?

```python
def f( x, k ) :
    a = 0
    for v in x :
        if ( v < k ) :
            a = a + 1
        elif ( v > k ) :
            a = a + 1
    n = len( x )
    return (n - a)
```
Part II Module implementation

8. (15 points) Develop module a.py. The module defines a single function f(). The function has no parameters and does not have a return statement. The function prints success and nothing else. Also, develop a program atest.py. The only action of the tester is to invoke function f() exactly once. The tester should produce output

 success

9. (15 points) Develop module b.py. The module defines a single function f(). The function has four numeric parameters a, b, c, and d. The function does not print any output. If the sum of the parameters is negative, the function returns -1; if the sum of the parameters is zero, the function returns 0; and if the sum of the parameters is positive, the function returns 1. A tester btest.py for function f() is available. A run of the tester should produce output

 f(1, -4, 4, -1): 0
 f(0, 2, -4, 1): -1
 f(-1, -1, 5, 0): 1

10. (15 points) Develop module c.py. The module defines a single function f(). The function has one string parameter w. The function does not print any output. The function returns whether w contains a lowercase vowel. A tester ctest.py for function f() is available. A run of the tester should produce output

 f('AEIOU'): False
 f('styx'): False
 f(''): False
 f('bad'): True
 f('bed'): True
 f('bid'): True
 f('bod'): True
 f('bud'): True

11. (15 points) Develop module d.py. The module defines a single function f(). The function has one numeric list parameter x. The function does not print any output. The function returns a new list whose values are the non-negative values of x in sorted order. A tester dtest.py for function f() is available. A run of the tester should produce output

 f([]): []
 f([-3, -1, -4]): []
 f([0, 0]): [0, 0]
 f([-3, 1, -4, 5]): [1, 5]
 f([3, 1, 4, 5, 9]): [1, 3, 4, 5, 9]
12. (15 points) Develop module e.py. The module defines a single function \(f() \). The function has one numeric list parameter \(x \). The function does not print any output. The function returns a new dictionary. The keys for the dictionary are the element values of \(x \). A negative \(x \) element value is mapped to ' - '; a positive \(x \) element value is mapped to ' + '; and a zero \(x \) element value is mapped to ' 0 '. A run of the tester should produce output

\[
\begin{align*}
\text{f(\ [-3, \ -1, \ -4\]):} & \quad \{-4: ' - ', \ -3: ' - ', \ -1: ' - '\} \\
\text{f(\ [\ 0, \ 0\]):} & \quad \{\ 0: ' 0'\} \\
\text{f(\ [1, \ -1, \ 0\]):} & \quad \{\ 0: ' 0', \ 1: ' + ', \ -1: ' - '\} \\
\text{f(\ [-3, \ 1, \ -4, \ 5\]):} & \quad \{1: ' + ', \ -4: ' - ', \ -3: ' - ', \ 5: ' + '\} \\
\text{f(\ [3, \ 0, \ 4, \ 5, \ -9\]):} & \quad \{0: ' 0', \ 3: ' + ', \ 4: ' + ', \ 5: ' + ', \ -9: ' - '\}
\end{align*}
\]