CS 1112 Spring 2019 Test 2 Page 10f 6

Ever so clearly print your email id:
Ever so clearly print your name:

Pledge:

Notices
e Based on your past educational achievements, | expect you to do well on this test.

e Answer the questions in any order that you want.

Test rules

o Before you leave the room, check that you uploaded all six of your solutions. Do not ask afterwards whether
you can submit a forgotten solution.

e This pledged exam is closed notes. The only device you may access during the test is your laptop.
e Any cheating can result in failing the class and the incident being referred to the Honor Committee.

e Do not access class examples artifacts, web solutions, or your own past assignments during the test; that is,
the only code you may access or view are ones that you develop for this test.

e The only windows allowed on your laptop are PyCharm and a single browser with tabs reachable from class
website.

PyCharm

e PyCharm can be used for developing the modules to be submitted. It cannot be used for the short answer
questions of Part 1.

Programming

e Modules should follow class programming practices; e.g., whitespace, identifier naming, and commenting if
you think it is needed, etc.

o Whether a module is testable is important.

e Comment out or delete all debugging print() statements before submitting.

CS 1112 Spring 2019 Test 2

Part | (22 points)

1. TRUE FALSE
2. TRUE FALSE
3. TRUE FALSE
4. TRUE FALSE
5. TRUE FALSE
6. TRUE FALSE
7. TRUE FALSE

Page 2 of 6

The Python looping statements are the if, for, and while.

Function parameters are named in the function definition.

Function parameters are named in a function invocation.

A function parameter can be used as an argument in a function invocation.

Function invocations require the use of parentheses.

No matter what the unknown function f() does, when the below code segment
completes, it outputs 123.

X = 123

fCx)
print(x)

No matter what the unknown function f() does, when the below code segment
completes it outputs 123.

X = 123
x = f(x)
print(x)

Suppose the following code segment is in effect.

def f(x) :

y =10 * x
a=2
b=fCa)

8. TRUE FALSE
9. TRUE FALSE
10. TRUE FALSE
11. TRUE FALSE

An invocation of function () produces a return value.

The expression f(a) is an invocation of function ().

ais a local variable of function f().

y is a local variable of function f().

CS 1112 Spring 2019 Test 2 Page 3 of 6

Suppose the following function definitions are in effect.

def sCa) : def tC a) : def uC a) :
a = 1112 a = 1112 al 0] = 1112
return a

12. What is the output of the following code segment?
x =1
sC x)
print(x)

13. What is the output of the following code segment?
a=1
sCa)
print(C a)

14. What is the output of the following code segment?
x =1
t(x)
print(x)

15. What is the output of the following code segment?
a=1
tCa)
print(C a)

16. What is the output of the following code segment?

x =1
x =t(x)
print(x)

17. What is the output of the following code segment?

x=0[3,1, 4]
uC x)
print(x)

Suppose the following function definition is in effect.

def f(x) :
x.append(100)

18. What does the following code segment output?

a=[1]
fCa)
printC a)

CS 1112 Spring 2019 Test 2 Page 4 of 6

Suppose the following function definition is in effect.

def f(x) :
x = [100]

19. What does the following code segment output?

a=[1]
fCa)
printC a)

Suppose the following function definition is in effect.

def f(x) :
for v in x :
if (v<=0) :
return False
else :
return True
20. TRUE FALSE Function f() correctly determines whether list X consists of all positive

values.z xk kp;Ix

Suppose the following function definition is in effect.

def f(x, y) :
remember = x
X =Yy
y = remember
return x, y

21. TRUE FALSE The below code segment correctly swaps the values of a and b.

a=11; b =12
a, b =~fCa, b)

22. What does the following code segment output?

a=[3,1, 4, 1]

i=1

while (1 ina) :
printC i)
i=1+1

CS 1112 Spring 2019 Test 2

Page 5 of 6

Part 2: Programming (78 points)

23.

24,

25.

26.

Implement module me. py . The module defines a function 1d(). The function has no parameters. The
function does not print anything.

The function returns a lowercase alphanumeric string. The string is to be your University of Virginia email
id. For example, if your email id was mst3k, the tester should produce the following output.

me.id(): mst3k

Implement module Iin.py . The module defines a function ear(). The function has three numeric
parameters m, b, and x. The function does not print anything. The function returns the value of the linear
equation mx + b.

The tester should produce the following output.

lin.ear(3, 5, 4): 17
lin.earC 2 , 4 , 3): 10
lin.ear(10 , 15, 2): 35

Implement module ph.py. The module defines a function one(). The function has a numeric string
parameter ns. The function does not print anything.

Parameter ns represents a phone number. The first three digits in the string are the area code; the next
three digits are the prefix; and the last four digits are the line number.

The function returns a three-element integer list. The first element of the list is the ns area code in integer
form; the middle element of the list is the ns prefix in integer form; the last element of the list is the ns line
number in integer form.

The tester should produce the following output.

ph.one('2024561111'): [202, 456, 1111]
ph.one('8602941986'): [860, 294, 1986]
ph.one('2125552368"'): [212, 555, 2368]

Implement module ¢ab. py. The module defines a function Le(). The function has one dataset parameter
d and one integer column index c. The function does not print anything. The function does not make any
changes to its parameters.

The function returns a list. The elements of that list are column ¢ values for the rows of dataset d.

Suppose the dataset parameter of interest is the three-row list [[5, 6, 5], [7, 3, 5, 5], [4, 7, 9, 8, 2, 3]] and
the column parameter of interest is 1, the return value is [6, 3, 7], because the 1th elements of [5, 6, 5],
[7,3,5,5],and [4, 7,9, 8, 2, 3] are respectively 6, 3, and 7.

The built-in tester runs four tests using the following datasets to initialize parameter d respectively.

do = [[l:la [Za 4]) [5) 3) 7) 7) 3) 3]]

dl = [[5) 6) 5]) [7) 3) 5) 5]) [4) 7) 9’ 8’ 2’ 3]]
dz2 = [[1) 4) 6]) [4) 8) 2) 7]) [3) 8) 4) 5’ 8’ 5]]
d3 = [[3) 1) 4) 1) 5) 9]]

CS 1112 Spring 2019 Test 2

27.

28.

Page 6 of 6

The tester should produce the following output.

tab.le(do, @): [1, 2, 5]
tab.1le(d1, 1): [6, 3, 7]
tab.le(d2, 2): [6, 2, 4]
tab.1le(d3, 3): [1]

Implement module di.py. The module defines a function ction(). The function has one list parameter
X. The function does not print anything. The function does not make any changes to its parameter.

The function returns a dictionary. The keys to that dictionary are the values of X. For each elementin x there
is an entry in the dictionary that maps that element to the number of times it appears in x.

LR A} A} A}

i', 'm', "1

A}

For example, suppose xequals ['m", , 'c'], then the dictionary maps 'c'to1, 'i' to 2,

and 'm' to 2.

The built-in tester runs four tests using the following datasets to initialize parameter X respectively.
X®= ['m" 'il’ 'ml’ 'il’ 'C']

x1 3, 1, 2, 2, 1, 2]

x2 = [True, False, True, True]

The tester should produce the following output.

di.ction(x0): { c
di.ction(x1): {1
di.ction(x2): { F

1, i: 2, m: 2}
2, 2: 3, 3: 11}
alse: 1, True: 3 }

Implement module a!.py. The module defines a function ike(). The function has two list parameters x
and y. The function does not print anything. The function does not make any changes to its parameters.

The function returns whether x and y are alike; that is, whether the list values are permutations of each
other. To be permutations, X and y and must have the same length and the same element counts.

For example, suppose X is [1, 1] and y is [1, 1, 1], then the function returns False because the lists do not
have the same number of elements. As a second example, suppose X is [1, 2, True, 2] and y is [True, 2, 2,
1], then the function returns True because while their orderings are different, their values are the same. As
a third example, suppose x is [1, 2, 'a'l and y is [2, 1, 2], then the function returns False because y does not
have an 'a' like x does.

The built-in tester runs four tests using the following datasets to initialize parameters X and y respectively.

x0 = [1, 1]; x1 = [1, 2, True, 2]; x2=[1, 2, 'a']; x3 =[]
y® [1’ 1) l:l) yl = [True) 2) 2) l:l) yz = [2) 1) 2]) y3 = []

The tester should produce the following output.

al.ike(x@, y@): False
al.ike(C x1, yl): True
al.ike(x2, y2): False
al.ike(x3, y3): True

