CS 1112 Spring 2020 Test 2 Page 1 of 4

COMMENTS

You have 90 minutes to complete. People with accommodations have 90 minutes times their
multiplier: 135 minutes (1.5) and 180 (2.0).

By submitting solutions for this test, you are agreeing that you neither given nor received aid directly
or indirectly to or from another test taker.

By submitting solutions for this test, you are agreeing that you did not use directly or indirectly use
materials from non-allowed sources.

Check that you uploaded all your solutions. Do not ask later to submit a forgotten solution.

The only device you may access during the exam is your laptop. The only open windows allowed are
PyCharm and a browser with tabs linked from the class website.

No outside help is permitted.
The only code you may access are ones that you develop for this test.

You may not access class notes, epistles, examples, artifacts, solutions on the web, or your own past
assignments during the test.

Code should follow class programming practices; e.g., whitespace, identifier naming, etc.
None of your code should print or request input.

Whether code is testable is important. Comment out or delete all debugging print () statements before
submitting.

Make sure all functions have at least one non-commented statement

CS 1112 Spring 2020 Test 2 Page 2 of 4

1. Complete the implementation of duck.py. The module defines a function quack() with no
parameters. The function returns the number of ducks — virtual or real — you earned this semester.
The definition as written is:

def quack()
nbr_of_ducks_earned = 0 # replace @ with number of ducks earned

return nbr_of_ducks_earned

Unless you update the function definition, the built-in tester for the module produces the
following.

quack(): o

2. Implement module mm.py. The module defines a function conv () with one decimal parameter p,
where p is a desired weight in pounds.

The function returns the integer number of marshmallows needed to make p pounds. To assist
you, the module already defines a constant WEIGHT_OF_ONE_MARSHMALLOW, which is the weight of
a typical marshmallow in pounds.

WEIGHT_OF_ONE_MARSHMALLOW = 0.0154324

The function return value should be gotten by rounding the decimal result of p divided by the
weight of one marshmallow.

The built-in tester for the module should produce the following.

conv(0.07716200000000001): 5
conv(1): 65
conv(2000): 129597

3. Implement module com.py. The module defines a function sob() with two integer parameters n
and c. The function returns the integer number of ways w of choosing ¢ elements from a list with
n elements.

The formula for determining the number of ways w is
w= (x//(y.z))
where
x=1e2e3e..en
y=1e2e3e..eC
Z=1e2¢3e...¢(n—-c)

The built-in tester for the module should produce the following.

sob(5, 3): 10
sob(8, 2): 28
sob(12, 4): 495

CS 1112 Spring 2020 Test 2 Page 3 of 4

4. Implement module tog.py. The module defines a function thob() with two string parameters s1
and s2, and a string list parameter s3. The function returns a new list of strings. The elements of
the new list are those elements of s3 that have both s1 and s2 as substrings.

The built-in tester makes use of the following string lists.

stringsl = ["tango", "apple", "banana", "manna", "nada"]
[II@@@II, II@@lII, II@l@II, II011II, “100“, II101II, II110II, II111II]
[1]

strings2

strings3

The built-in tester for the module should produce the following.

thob('an', 'na', stringsl): ['banana', 'manna'l
thob('@', '11', strings2): ['011', '110']
thob('0Q', "', strings3): T[]

5. Implement module can.py. The module defines a function cmp () with an integer list parameter x.
The function returns a new list of integers. The first value in the new list is either -1, 0, or 1
depending on whether the first element of x is negative, zero, or positive, the second value in the
new list is either -1, 0, or 1 depending on whether the second element of x is negative, zero, or
positive, and so on.

The built-in tester for the module makes use of the following datasets.

x1=14, -5, 2, -5, 91
x2=1[1@0, 8, 0, -7, 4, 4, 0]
X3 = [6; 8; 0; 2; 4]

The built-in tester for the module should produce the following.

cmp(x1): [1, -1, 1, -1, 1]
cmp(x2): [0, 1, 0, -1, 1, 1, 0]
cmp(x3): [1, 1, 0, 1, 1]]

6. Implement module wid.py. The module defines a function get () with two list parameters x and
y. You can assume x and y have the same length. The function returns a new dictionary. In the
new dictionary, the value at index 0 of x maps to the value at index 0 of y, the value at index 1 of
x maps to the value at index 1 of y, and so on.

The built-in tester makes use of the following lists.

X1= [Ial' Ibl' ICI, Idl' Iel]
yvi=11, 2, 3, 4, 51

X2 = [3; 1; 4! 1]

y2 = ['odd', 'odd', 'even', 'odd']

The built-in tester for the module should produce the following mappings (be aware your ordering
of the mappings could be different).

CS 1112 Spring 2020 Test 2

7.

9.

Page 4 of 4

get(x1, y1): {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
get(x2, y2): {3: 'odd', 1: 'odd', 4: 'even'}

Implement module cre.py. The module defines a function tea() with a parameter v and two
integer parameters r, and c. The function returns a new data set with r rows and with each row

having c columns. All values in the new data set are set to v.

The built-in tester for the module should produce the following.

tea(0, 2, 5) [[o, 0, 0, 0, 0], [0, O, O, O, O]]
tea(Ial, 3' 2) [[lal' |a|]' [lal' |a|]' [lal' |a|]]
tea(True, 4, 0) (er, 1, 1, [1l

Implement module atad.py. The module defines a function nbr() with a parameter v and a
dataset parameter d. The function returns a new list of integers. The first value in the new list is
the number of occurrences of v in the first row of the dataset, the second value in the new list is

the number of occurrences of v in the second row of the dataset, and so on.

The built-in tester for the module makes use of the following datasets.

dl = [[3; 1; 4; 1; 5; 9; 2]l
[6, 5, 3, 5,8,9,7,9, 3, 2]p
(3,8, 46,2,6,4, 3, 31,
[8 3,2,7,9,5, 011
d2=1[112,8,8, 411,

[9,7,1,6,9, 3,9, 91,
[3 7,5,1,0,5,8, 2,0,9,7,491]]

d3

1
o
o

[5 9,2, 3,07,8,1,6, 41]

The built-in tester for the module should produce the following.

nbr(di, 9): [1, 2, 0, 1]
nbr(d2, 8): [2, 0, 1]
nbr(d3, 5): [0, 0, 1]

Implement module spin.py. The module defines a function color() with a single pixel parameter
p. The function returns a new pixel whose R value is the maximum of p’s RGB values, whose G
value is the integer average of p’s RGB values, and whose B value is the minimum of p’s RGB values.

The built-in tester for the module should produce the following.

spin((50, 100, 200)): (200, 116, 50)
spin((241, 59, 136)): (241, 145, 59)
spin((90, 109, 80)): (109, 93, 80)

