
CS 1112 Spring 2020 Test 2 Page 1 of 4

COMMENTS
• You have 90 minutes to complete. People with accommodations have 90 minutes times their

multiplier: 135 minutes (1.5) and 180 (2.0).
• By submitting solutions for this test, you are agreeing that you neither given nor received aid directly

or indirectly to or from another test taker.
• By submitting solutions for this test, you are agreeing that you did not use directly or indirectly use

materials from non-allowed sources.
• Check that you uploaded all your solutions. Do not ask later to submit a forgotten solution.
• The only device you may access during the exam is your laptop. The only open windows allowed are

PyCharm and a browser with tabs linked from the class website.
• No outside help is permitted.
• The only code you may access are ones that you develop for this test.
• You may not access class notes, epistles, examples, artifacts, solutions on the web, or your own past

assignments during the test.
• Code should follow class programming practices; e.g., whitespace, identifier naming, etc.
• None of your code should print or request input.
• Whether code is testable is important. Comment out or delete all debugging print() statements before

submitting.
• Make sure all functions have at least one non-commented statement

CS 1112 Spring 2020 Test 2 Page 2 of 4

1. Complete the implementation of duck.py. The module defines a function quack() with no
parameters. The function returns the number of ducks – virtual or real – you earned this semester.
The definition as written is:

def quack() :
 nbr_of_ducks_earned = 0 # replace 0 with number of ducks earned

 return nbr_of_ducks_earned

Unless you update the function definition, the built-in tester for the module produces the
following.

quack(): 0

2. Implement module mm.py. The module defines a function conv() with one decimal parameter p,
where p is a desired weight in pounds.

The function returns the integer number of marshmallows needed to make p pounds. To assist
you, the module already defines a constant WEIGHT_OF_ONE_MARSHMALLOW, which is the weight of
a typical marshmallow in pounds.

WEIGHT_OF_ONE_MARSHMALLOW = 0.0154324

The function return value should be gotten by rounding the decimal result of p divided by the
weight of one marshmallow.

The built-in tester for the module should produce the following.

conv(0.07716200000000001): 5
conv(1): 65
conv(2000): 129597

3. Implement module com.py. The module defines a function sob() with two integer parameters n
and c. The function returns the integer number of ways w of choosing c elements from a list with
n elements.

The formula for determining the number of ways w is

w = (x // (y • z))

where

x = 1 • 2 • 3 • … • n

y = 1 • 2 • 3 • … • c

z = 1 • 2 • 3 • … • (n – c)

The built-in tester for the module should produce the following.

sob(5, 3): 10
sob(8, 2): 28
sob(12, 4): 495

CS 1112 Spring 2020 Test 2 Page 3 of 4

4. Implement module tog.py. The module defines a function thob() with two string parameters s1
and s2, and a string list parameter s3. The function returns a new list of strings. The elements of
the new list are those elements of s3 that have both s1 and s2 as substrings.

The built-in tester makes use of the following string lists.

strings1 = ["tango", "apple", "banana", "manna", "nada"]

strings2 = ["000", "001", "010", "011", "100", "101", "110", "111"]

strings3 = []

The built-in tester for the module should produce the following.

thob('an', 'na', strings1): ['banana', 'manna']
thob('0', '11', strings2): ['011', '110']
thob('0', '', strings3): []

5. Implement module can.py. The module defines a function cmp() with an integer list parameter x.
The function returns a new list of integers. The first value in the new list is either -1, 0, or 1
depending on whether the first element of x is negative, zero, or positive, the second value in the
new list is either -1, 0, or 1 depending on whether the second element of x is negative, zero, or
positive, and so on.

The built-in tester for the module makes use of the following datasets.

x1 = [4, -5, 2, -5, 9]

x2 = [0, 8, 0, -7, 4, 4, 0]

x3 = [6, 8, 0, 2, 4]

The built-in tester for the module should produce the following.

cmp(x1): [1, -1, 1, -1, 1]
cmp(x2): [0, 1, 0, -1, 1, 1, 0]
cmp(x3): [1, 1, 0, 1, 1]]

6. Implement module wid.py. The module defines a function get() with two list parameters x and
y. You can assume x and y have the same length. The function returns a new dictionary. In the
new dictionary, the value at index 0 of x maps to the value at index 0 of y, the value at index 1 of
x maps to the value at index 1 of y, and so on.

The built-in tester makes use of the following lists.

x1 = ['a', 'b', 'c', 'd', 'e']
y1 = [1, 2, 3, 4, 5]

x2 = [3, 1, 4, 1]
y2 = ['odd', 'odd', 'even', 'odd']

The built-in tester for the module should produce the following mappings (be aware your ordering
of the mappings could be different).

CS 1112 Spring 2020 Test 2 Page 4 of 4

get(x1, y1): {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
get(x2, y2): {3: 'odd', 1: 'odd', 4: 'even'}

7. Implement module cre.py. The module defines a function tea() with a parameter v and two
integer parameters r, and c. The function returns a new data set with r rows and with each row
having c columns. All values in the new data set are set to v.

The built-in tester for the module should produce the following.

tea(0, 2, 5) : [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
tea('a', 3, 2) : [['a', 'a'], ['a', 'a'], ['a', 'a']]
tea(True, 4, 0) : [[], [], [], []]

8. Implement module atad.py. The module defines a function nbr() with a parameter v and a
dataset parameter d. The function returns a new list of integers. The first value in the new list is
the number of occurrences of v in the first row of the dataset, the second value in the new list is
the number of occurrences of v in the second row of the dataset, and so on.

The built-in tester for the module makes use of the following datasets.

d1 = [[3, 1, 4, 1, 5, 9, 2],

 [6, 5, 3, 5, 8, 9, 7, 9, 3, 2],

 [3, 8, 4, 6, 2, 6, 4, 3, 3],

 [8, 3, 2, 7, 9, 5, 0]]

d2 = [[2, 8, 8, 4, 1],

 [9, 7, 1, 6, 9, 3, 9, 9],

 [3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9]]

d3 = [[4, 4],

 [],

 [5, 9, 2, 3, 0, 7, 8, 1, 6, 4]]

The built-in tester for the module should produce the following.

nbr(d1, 9): [1, 2, 0, 1]
nbr(d2, 8): [2, 0, 1]
nbr(d3, 5): [0, 0, 1]

9. Implement module spin.py. The module defines a function color() with a single pixel parameter
p. The function returns a new pixel whose R value is the maximum of p’s RGB values, whose G
value is the integer average of p’s RGB values, and whose B value is the minimum of p’s RGB values.
The built-in tester for the module should produce the following.

spin((50, 100, 200)): (200, 116, 50)
spin((241, 59, 136)): (241, 145, 59)
spin((90, 109, 80)): (109, 93, 80)

