CS 216, Fall 2005: Chapter 2

- These slides were used in the lecture on Chapter 2 during Fall 2005.
 - Consult these with notes taken in class.
Classifying functions by their Asymptotic Growth Rates

- asymptotic growth rate, asymptotic order, or order of functions
 - Comparing and classifying functions that ignores constant factors and small inputs.

- The Sets big oh $O(g)$, big theta $\Theta(g)$, big omega $\Omega(g)$
 - $\Omega(g)$: functions that grow at least as fast as g
 - $\Theta(g)$: functions that grow at the same rate as g
 - $O(g)$: functions that grow no faster than g
The Sets $O(g)$, $\Theta(g)$, $\Omega(g)$

- Let g and f be a functions from the nonnegative integers into the positive real numbers
- For some real constant $c > 0$ and some nonnegative integer constant N_0
- $O(g)$ is the set of functions f, such that
 - $f(N) \leq c \cdot g(N)$ for all $N \geq n_0$
- $\Omega(g)$ is the set of functions f, such that
 - $f(N) \geq c \cdot g(N)$ for all $N \geq n_0$
- $\Theta(g) = O(g) \cap \Omega(g)$
 - $\Theta(g)$ is the asymptotic order of g or the order of g
 - $f \in \Theta(g)$ read as f is in $\Theta(g)$
Asymptotic Bounds

- The Sets big oh \(O(g) \), big theta \(\Theta(g) \), big omega \(\Omega(g) \) – remember these meanings:
 - \(O(g) \): functions that grow no faster than \(g \), or asymptotic upper bound
 - \(\Omega(g) \): functions that grow at least as fast as \(g \), or asymptotic lower bound
 - \(\Theta(g) \): functions that grow at the same rate as \(g \), or asymptotic tight bound
Another Way to Define Order Classes

- Comparing $f(n)$ and $g(n)$ as n approaches infinity,
- IF
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)}
 \]
- $< \infty$, including the case in which the limit is 0 then $f \in O(g)$
- > 0, including the case in which the limit is ∞ then $f \in \Omega(g)$
- $= c$ and $0 < c < \infty$ then $f \in \Theta(g)$
- $= 0$ then $f \in o(g)$ //read as “little oh of g”
- $= \infty$ then $f \in \omega(g)$ //read as “little omega of g”
Some Properties of $O(g)$, $\Theta(g)$, $\Omega(g)$

- Transitive: If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.
 O is transitive. Also Ω, Θ, o, ω are transitive.
- Reflexive: $f \in \Theta(f)$
- Symmetric: If $f \in \Theta(g)$, then $g \in \Theta(f)$
- Θ defines an equivalence relation on the functions.
 - Each set $\Theta(f)$ is an equivalence class (complexity class).
- $f \in O(g) \iff g \in \Omega(f)$
- $O(f + g) = O(\max(f, g))$
 similar equations hold for Ω and Θ.
Classification of functions (1)

- $O(1)$ denotes the set of functions bounded by a \textit{constant} (for large n)
- $f \in \Theta(n)$, f is \textit{linear}
- $f \in \Theta(n^2)$, f is \textit{quadratic}, $f \in \Theta(n^3)$, f is \textit{cubic}
- $\log n \in o(n^\alpha)$ for any $\alpha > 0$, including fractional powers
- $n^k \in o(c^n)$ for any $k > 0$ and any $c > 1$
 - powers of n grow more slowly than any exponential function c^n
Does Order Class Matter?

- No, not for small inputs
- Yes, for many real problems
Practical Complexity

\[f(n) = n \]
\[f(n) = \log(n) \]
\[f(n) = n \log(n) \]
\[f(n) = n^2 \]
\[f(n) = n^3 \]
\[f(n) = 2^n \]
Practical Complexity

\[f(n) = n \]
\[f(n) = \log(n) \]
\[f(n) = n \log(n) \]
\[f(n) = n^2 \]
\[f(n) = n^3 \]
\[f(n) = 2^n \]
Practical Complexity

$$f(n) = n$$
$$f(n) = \log(n)$$
$$f(n) = n \log(n)$$
$$f(n) = n^2$$
$$f(n) = n^3$$
$$f(n) = 2^n$$
Practical Complexity

- $f(n) = n$
- $f(n) = \log(n)$
- $f(n) = n \log(n)$
- $f(n) = n^2$
- $f(n) = n^3$
- $f(n) = 2^n$
Practical Complexity
Example Done on 9/27/2005
Another Example: Fibonacci Numbers

• Recursive mathematical definition
 • Fibonacci numbers:
 \[F(0) = F(1) = 1 \]
 \[F(n) = F(n-1) + F(n-2) \text{ for } n > 1 \]
 • Note base case

• How to implement? Can you name two different ways?
 • Loop. Complexity: \(O(n) \)
 • Recursively. Complexity: \(? \)
Implement Fibonacci numbers

• It’s beautiful code, no?

```cpp
long fib(int n) {
    assert(n >= 0);
    if (n == 0) return 1;
    if (n == 1) return 1;
    return fib(n-1) + fib(n-2);
}
```

• Is there a problem here? (Yes, inefficient.)
 • Run and time it.
 • Trace it out
 • Show what recursive calls are made for smaller inputs
Recursion: Good or Evil?

• It depends...
• Sometimes recursion is an efficient design strategy, sometimes not
 • Important! we can define recursively and implement non-recursively
• Note that many recursive algorithms can be re-written non-recursively
 • Use an explicit stack
 • Remove tail-recursion (compilers often do this for you)
• For Fibonacci, the answer is: Bad Idea!
Time for Recursive Fibonacci

<table>
<thead>
<tr>
<th>N</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series2</td>
<td>0.02</td>
<td>0.04</td>
<td>0.07</td>
<td>0.57</td>
<td>6.008</td>
<td>67.42</td>
<td>984.5</td>
</tr>
</tbody>
</table>

seconds

- The graph shows the time (in seconds) taken to compute the Fibonacci series recursively for increasing values of N.
- The data points indicate a significant increase in time as N increases.
- Series2 shows a exponential growth in computation time.