Topological Sort

- Given a directed acyclic graph, construct an ordering of the vertices such that if there is a path from \(v_i \) to \(v_j \), then \(v_i \) appears after \(v_j \) in the ordering.
- indegree of \(v \): \# of edges \((u, v)\).

```cpp
void Graph::toposort(){
    Vertex v, w;
    for (int counter=0; counter < NUM_VERTICES; counter++){
        v = findNewVertexOfDegreeZero();
        if (v == NOT_A_VERTEX)
            throw CycleFound();
        v.topologicalNum = counter;
        for each w adjacent to v
            w.indegree--;
    }
}
```

Shortest Path Algorithms

- ("single-source" shortest path)
 - Given a graph \(G = (V, E) \) and a single distinguished vertex \(s \), find the shortest weighted path from \(s \) to every other vertex in \(G \).

 weighted path length of \(v_1, v_2, \ldots, v_N \):
 \[
 \sum_{i=1}^{N-1} c_{i,i+1}, \text{ where } c_{i,j} \text{ is the cost of edge } (v_i, v_j)
 \]

Unweighted Shortest Path

- Special case of the weighted problem: all weights are 1.
- Solution: breadth-first search. Similar to level-order traversal for trees.
void Graph::unweighted (Vertex s){
 Queue q(NUM_VERTICES);
 Vertex v, w;
 q.enqueue(s);
 s.dist = 0;
 while (!q.isEmpty()){
 v = q.dequeue();
 for each w adjacent to v if (w.dist == INFINITY)
 w.dist = v.dist + 1;
 q.enqueue(w);
 }
}

Weighted Shortest Path

• no negative weight edges.
• **Dijkstra’s algorithm**: uses similar ideas as the unweighted case.

Greedy algorithms:

do what seems to be best at every decision point.

Analysis

• How long does it take to find the smallest unknown distance?
 – simple scan using an array:
 – binary heap:
• Total running time:
 – simple scan:
 – binary heap: