Trees

Chapter #4

pp. 121-155, 163-164, 170
Trees

• **Motivation**: O(N) time to access arrays or linked lists.

• **Goal**: O(log N) time for all operations.

• A **tree** is a collection of nodes. The collection may be empty. If it isn’t empty, then the tree consists of a **distinguished node** \(r \), called a **root** and zero or more non-empty distinct (sub)trees \(T_1, \ldots, T_k \), each of whose root are connected by a **directed edge** from \(r \).
Visualizing Trees

- root of each subtree is a child of r.
- r is the parent of each subtree root.
Tree terminology

- A **leaf** has no children.
- **Siblings** have the same parent.
- A **path** is a sequence of nodes \(n_1, n_2, \ldots, n_k \) such that \(n_i \) is the parent of \(n_{i+1} \) for \(1 \leq i < k \).
- The **length** of a path is the number of edges in the path.
- The **depth** of a node is the length of the path from the root to the node.
- The **height** of a tree: length of the longest path from root to a leaf.
Tree example

- C:\
 - CS216
 - lab1
 - list.h
 - lab2
 - list.cpp
 - lab3
 - calc.cpp
 - CS120
 - MyMail
 - school
 - pers
Example: HTML document

<HTML>
<HEAD>…</HEAD>
<BODY>
<H1>My Page</H1>
<P> Blah
<pre>blah blah</pre>
End
</P>
</BODY></HEAD>
</HTML>

How is this a tree?
Trees are Everywhere

• Lab 3 – calculator
• folders/files on a computer
• HTML and XML document structures
• compilers: parse tree
 \[a = (b + c) \times d; \]
First child/next sibling

```c
struct TreeNode
{
    Object    element;
    TreeNode *firstChild;
    TreeNode *nextSibling;
}
```

![Diagram showing a tree structure with nodes and edges labeled with courses and files.](image-url)
Tree traversals

TreeNode::printTree(TreeNode tnode) {
 tnode.print();
 for each child c of tnode
 c.printTree();
}

• preorder/postorder traversal
int TreeNode::numNodes(TreeNode tnode) {
 if (tnode == NULL)
 return 0;
 else
 sum = 0;
 for each child c of tnode
 sum += numNodes(c);
 return 1 + sum;
}
Binary trees

- A **binary tree** is a tree where all nodes have at most two children.

```c
struct BinaryNode
{
    Object element;
    BinaryNode *left;
    BinaryNode *right;
}
```

![Binary tree diagram]
Binary Search Trees

• Associated with each node is a **key** value that can be compared.

• **Binary search tree property:**
 – every node in the left subtree has key whose value is less than the value of the root’s key value, and
 – every node in the right subtree has key whose value is greater than the value of the root’s key value.
Example

BINARY SEARCH TREE
Counterexample

NOT A BINARY SEARCH TREE
find

• **Basic idea:** compare the value to be found to the key of the root of the tree.
 – If they are **equal**, we are done.
 – If they are **not equal**, recurse depending on which half of the tree the value to be found should be in if it is there.
find

BNode<int> *
BST::find(const int x, BNode<int> *t){
 if (t == NULL)
 return NULL;
 else if (x < t->element)
 return find(x, t->left);
 else if (x > t->element)
 return find(x, t->right);
 else
 return t; // match
}
BST Insert

• To insert an element, we essentially do a **find**. When we reach a NULL pointer, we create a new node there.

```c++
void BST::insert(const Comp & x, BinaryNode<Comp> * & t) {
    if (t == NULL)
        t = new BinaryNode<Comp>(x, NULL, NULL);
    else if (x < t->element)
        insert(x, t->left);
    else if (x > t->element)
        insert(x, t->right);
    else
        ;  // if duplicate; do appropriate thing
}
```
findMin, findMax

• To find the maximum element in the BST, we ...

• To find the minimum element in the BST, we ...
BST remove

• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed. Then “fix” the tree so that it is still a binary search tree.

• Three cases:
 – node has no children
 – node has one child
 – node has two children
No children, one child

[Diagram of a tree with nodes labeled 1, 3, 4, 5, 7, and 11]
Two children
• Replace the node with its successor. Then remove the successor from the tree.
Height of BSTs

• n-node BST: Worst case depth: $n-1$.

• **Claim:** The maximum number of nodes in a binary tree of height h is $2^{h+1} - 1$.

Proof: The proof is by induction on h. For $h = 0$, the tree has one node, which is equal to $2^{0+1} - 1$. Suppose the claim is true for any tree of height h. Any tree of height $h+1$ has at most two subtrees of height h. By the induction hypothesis, this tree has at most $2 \cdot (2^{h+1} - 1) + 1 = 2^{h+2} - 1$.
Height of BSTs, cont’d

• If we have a BST of n nodes and height h, then by the Claim,
 \[n \leq 2^{h+1} - 1. \]
 So, $h \geq \log (n+1) - 1$.

• **Average** depth of nodes in a tree.
 Assumptions: insert items randomly (with equal likelihood); each item is equally likely to be looked up.

• **Internal path length**: the sum of the depths of all nodes.
traversals

```cpp
void BST::print(BNode<int> *t) {
    if (t != NULL) {
        print(t->left);
        cout << t->element;
        print(t->right);
    }
}
```
AVL Trees

• **Motivation:** we want to guarantee $O(\log n)$ running time on the find/insert/remove operations.

• **Idea:** keep the tree balanced after each operation.

• **Solution:** AVL (Adelson-Velskii and Landis) trees.

• **AVL tree property:** for every node in the tree, the height of the left and right subtrees differs by at most 1.
AVL tree

not an AVL tree
AVL trees: find, insert

• AVL tree **find** is the same as BST find.
• AVL **insert**: same as BST insert, except that we might have to “fix” the AVL tree after an insert.
• These operations will take time $O(d)$, where d is the depth of the node being found/inserted.
• What is the maximum height of an n-node AVL tree?
AVL tree insert

• Let x be the deepest node where an imbalance occurs.
• Four cases to consider. The insertion is in the
 1. left subtree of the left child of x.
 2. right subtree of the left child of x.
 3. left subtree of the right child of x.
 4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.
Single rotation example
Single rotation in general

\[X < b < Y < a < Z \]

\[h \geq -1 \]
Cases 2 & 3 — try a single rotation…

\[X < b < Y < a < Z \]

single rotation fails!
Double rotation, step 1
Double rotation, step 2
Double rotation in general

\[W < b < X < c < Y < a < Z \]

\[h \geq 0 \]
AVL tree: Running times

- **find** takes $O(\log n)$ time, because height of the tree is always $O(\log n)$.
- **insert**: $O(\log n)$ time because we do a find ($O(\log n)$ time), and then we may have to visit every node on the path back to the root, performing up to 2 single rotations ($O(1)$ time each) to fix the tree.

- **remove**: $O(\log n)$ time. Left as an exercise.