traversals

```cpp
void BST::print(BNode<int> *t){
    if (t != NULL)
        print(t->left);
    cout << t->element;
    print(t->right);
}
}
```

AVL Trees

- **Motivation**: we want to **guarantee** $O(\log n)$ running time on the find/insert/remove operations.
- **Idea**: keep the tree balanced after each operation.
- **Solution**: AVL (Adelson-Velskii and Landis) trees.

- **AVL tree property**: for every node in the tree, the **height** of the left and right subtrees differs by at most 1.

AVL trees: find, insert

- AVL tree **find** is the same as BST find.
- AVL **insert**: same as BST insert, except that we might have to “fix” the AVL tree after an insert.
- These operations will take time $O(d)$, where d is the depth of the node being found/inserted.
- What is the maximum height of an n-node AVL tree?

AVL tree insert

- Let x be the **deepest** node where an imbalance occurs.
- Four cases to consider. The insertion is in the
 1. left subtree of the left child of x.
 2. right subtree of the left child of x.
 3. left subtree of the right child of x.
 4. right subtree of the right child of x.
- Idea: Cases 1 & 4 are solved by a **single rotation**. Cases 2 & 3 are solved by a **double rotation**.

Single rotation example
Single rotation in general

\[X < b < Y < a < Z \]

Cases 2 & 3 — try a single rotation...

\[X < b < Y < a < Z \]

Single rotation fails!

Double rotation, step 1

Double rotation, step 2

Double rotation in general

AVL tree: Running times

- **find** takes \(O(\log n) \) time, because height of the tree is always \(O(\log n) \).
- **insert**: \(O(\log n) \) time because we do a find \(O(\log n) \) time), and then we may have to visit every node on the path back to the root, performing up to 2 single rotations \(O(1) \) time each) to fix the tree.
- **remove**: \(O(\log n) \) time. Left as an exercise.