More on Pipelining and Pipelines in Real Machines

CS 333
Fall 2006

Main Ideas

- Data Hazards
 - RAW
 - WAR
 - WAW
- More pipeline stall reduction techniques
 - Branch prediction
 - static
 - dynamic
 - bimodal branch prediction
- Multiple-issue
 - static
 - dynamic (superscalar)
- Pipelines in real processors - Pentium 4, AMD Athlon (next class)

Pipelining

- Exploits parallelism between instructions
 - Instruction-level parallelism (ILP)
 - Gain performance
- Pipelining overlaps more instructions
 - Subdivides instruction execution into subtasks

Data Hazards

- Read after Write (RAW)
 - add r0, r1, r2
 - sub r4, r3, r0
- Write after Write (WAW)
 - add r0, r1, r2
 - sub r0, r4, r5
- Write after Read (WAR)
 - add r2, r1, r0
 - sub r0, r3, r4

Control Hazards

- Resolution of branch condition does not occur until MEM stage
 - Causes stalls
- Approaches to handling:
 - Stall (pipeline bubbles)
 - Delayed branch slot
 - Static prediction
 - Does not rely on runtime information
 - Various approaches:
 - always taken or, always not taken
 - backwards taken, forwards not taken (loops)
If branch is mispredicted, need to undo all instructions in the pipeline along the incorrect path (need extra resources)

Dynamic Branch Prediction

- Use execution behavior to make a prediction
 - 2 bit counters
 - use recent branch behavior to predict future
 - bimodal branch prediction
 - 2 bit counters
 - use recent branch behavior to predict future
Multiple Issue
- Another approach to increasing instruction level parallelism
- Launch many instructions in each stage
 - Need more resources (instead of 1 washer and dryer, may need multiple washers and dryers, AND more people to help fold clothes)
 - Disadvantage
 » Need additional resources to keep all resources busy

Multiple Issue
- Additional tasks
 - Packaging instructions into issue slots
 » how many instructions?
 » which instructions?
 - Handling data and control hazards

Static Multiple Issue
- Uses compiler to determine:
 - issue packets
 - handle data and control hazards
 » register renaming
 » removes WAR and WAW dependences
 add r0, r1, r2
 sub r0, r4, r5
 Rename r0 in sub to r3

Dynamic Multiple Issue
- aka superscalar
 - Dynamically chooses instructions to execute next, possibly reorders them (to avoid stalls)
- Reservation stations
 - Holds operands and operation information
- Reorder buffer
 - Stores results to be written to register file
 - Writes results to register file in-order

Real Processors
Intel Pentium 4 and AMD Athlon

Main Points
- Difference in approaches
 - Intel Pentium 4
 » Increase pipeline depth to handle more instructions
 » Increase clock frequency
 - AMD Athlon
 » Try to balance performance (IPC) and operating frequency
- Big Picture Similarities
 - Both use
 » pipelining
 » dynamic multiple issue (superscalar)
 » out-of-order execution
 » branch prediction
 - Both execute IA-32 instructions
Intel Pentium 4 Processor

Outline

- Pentium 4 – 20 stages
 - Instruction Set Architecture
 - Instruction Stream
- Pentium 4 revisions
 - Northwood (1/2002) – 21 stages
 - Prescott (2/2004) – 31 stages

Introduction

- Intel Pentium 4 processor
 - Latest IA-32 processor equipped with a full set of IA-32 SIMD (single-instruction multiple data) operations

IA-32

- Intel architecture 32-bit (IA-32)
 - 80386 instruction set (1985)
 - CISC, 32-bit addresses
- Registers
 - Eight 32-bit registers
 - Eight FP stack registers
 - 6 segment registers

IA-32 (cont’d)

- Addressing modes
 - Register indirect (mem[reg])
 - Base + displacement (mem[reg + const])
 - Base + scaled index (mem[reg + (2^scale x index)])
 - Base + scaled index + displacement (mem[reg + (2^scale x index) + displacement])
- SIMD instruction sets
 - MMX (Pentium II)
 - Eight 64-bit MMX registers, integer ops only
 - SSE (Streaming SIMD Extension, Pentium III)
 - Eight 128-bit registers

Pentium III vs. Pentium 4 Pipeline
Instruction Set Architecture

- Pentium4 ISA = Pentium3 ISA + SSE2 (Streaming SIMD Extensions 2)
- SSE2 is an architectural enhancement to the IA-32 architecture

Instruction Stream

- Features
 - Added Trace Cache
 - Improved branch predictor
- Terminology
 - µop – Micro-op, already decoded RISC-like instructions
 - Front end – instruction fetch and issue

Front End

- Prefetches instructions that are likely to be executed
- Fetches instructions that haven’t been prefetched
- Decodes instruction into µops
- Generates µops for complex instructions or special purpose code
- Predicts branches

Decoder

- Single decoder that can operate at a maximum of 1 instruction per cycle
- Receives instructions from L2 cache 64 bits at a time
- Some complex instructions must enlist the help of the microcode ROM

Trace Cache

- Primary instruction cache
- Stores decoded µops
- ~12K capacity
- On a Trace Cache miss, instructions are fetched and decoded from the L2 cache
What is a Trace Cache?

- Traditional instruction cache
- Trace cache

Pentium 4 Trace Cache

- Has its own branch predictor that directs where instruction fetching needs to go next in the Trace Cache
- Removes
 - Decoding costs on frequently decoded instructions
 - Extra latency to decode instructions upon branch mispredictions

Microcode ROM

- Used for complex IA-32 instructions (> 4 µops), such as string move, and for fault and interrupt handling
- When a complex instruction is encountered, the Trace Cache jumps into the microcode ROM which then issues the µops
- After the microcode ROM finishes, the front end of the machine resumes fetching µops from the Trace Cache

Branch Prediction

- Predicts ALL near branches
 - Includes conditional branches, unconditional calls and returns, and indirect branches
- Does not predict far transfers
 - Includes far calls, irets, and software interrupts

Branch Prediction

- Dynamically predict the direction and target of branches based on PC using branch target buffer (BTB)
- If no dynamic prediction is available, statically predict
 - Taken for backwards looping branches
 - Not taken for forward branches
- Traces are built across predicted branches to avoid branch penalties

Branch Target Buffer

- Stores branch target addresses
- Uses a branch history table and a branch target buffer to predict
- Updating occurs when branch is retired
Return Address Stack
- 16 entries
- Predicts return addresses for procedure calls
- Allows branches and their targets to coexist in a single cache line
 - Increases parallelism since decode bandwidth is not wasted

Branch Hints
- P4 permits software to provide hints to the branch prediction and trace formation hardware to enhance performance
- Take the forms of prefixes to conditional branch instructions
- Used only at trace build time and have no effect on already built traces

Out-of-Order Execution
- Designed to optimize performance by handling the most common operations in the most common context as fast as possible
- 126 µops can in flight at once
 - Up to 48 loads / 24 stores

Issue
- Instructions are fetched and decoded by translation engine
- Translation engine builds instructions into sequences of µops
- Stores µops to trace cache
- Trace cache can issue 3 µops per cycle

Execution
- Can dispatch up to 6 µops per cycle
- Exceeds trace cache and retirement µop bandwidth
 - Allows for greater flexibility in issuing µops to different execution units

Execution Units
Double-pumped ALUs
- ALU executes an operation on both rising and falling edges of clock cycle

Retirement
- Can retire 3 µops per cycle
- Precise exceptions
- Reorder buffer to organize completed µops
- Also keeps track of branches and sends updated branch information to the BTB

Execution Pipeline

Register Renaming
- 8-entry architectural register file
- 128-entry physical register file
- 2 RAT
 - Frontend RAT and Retirement RAT
- Data does not need to be copied between register files when the instruction retires
Loses consistently to AMD

- In terms of performance, the Pentium 4 is as slow or slower than existing Pentium III and AMD Athlon processors
- In terms of price, an entry level Pentium 4 sells for about double the cost of a similar Pentium III or AMD Athlon-based system
- 1.5GHz clock rate is more hype than substance

Northwood

- 1/2002
- Differences from Willamette
 - Socket 478
 - 21 stage pipeline
 - 512 KB L2 cache
 - 2.0 GHz, 2.2 GHz clock frequency
 - 0.13µm fabrication process (130 nm)
 - » 55 million transistors

Prescott

- 2/2004
- Differences
 - 31 stage pipeline!
 - 1MB L2 cache
 - 3.8 GHz clock frequency
 - 0.9µm fabrication process
 - SSE3