More on Caches
Virtual Memory (cont’d)

Topics
• TDay Holiday Reading Assignment
 – Read sections 6.1 and 6.4 in the textbook
 • Number systems and radix conversion (6.1)
 • Floating point representation and arithmetic (6.4)
 – Potential final exam questions:
 • Problems 6.1-6.3, 6.29, 6.30
• Caches wrapup
 – Address generation
 – A few more cache examples
• Virtual Memory review
 – Speeding up address translation

Last Friday - Class Participation 3
• 7.21
 – 128 MB main memory
 – 2 MB cache
 – Blocks are 32 bytes in size
 – byte addressable
 Show the number of bits for tag, index, offset for:
 – fully associative
 – direct-mapped
 – 8-way set associative

Address Generation (Direct-mapped)

Address Generation (8-way Set Associative)

Virtual Memory
Virtual Memory

Choosing Page Sizes

- Smaller page size
 - May increase number of page faults
 - More memory traffic
 - Increases size of page table (takes up more memory space)
- One solution: multilevel page tables
 - Highest level page table entry contains pointers to other page tables (tree)

Speeding up Address Translation

- Translation for each memory reference
- Each memory reference requires:
 - Page table access
 - to get page table entry
 - Access the memory location given the physical address calculated

 2 memory accesses == very slow
 Can this be sped up?

Question

- Memory is much cheaper now than in 1960s, do we still need virtual memory?

Translation Lookaside Buffer (TLB)

- Small “cache” (hardware)
 - stores most recent page table references
 - generally fully-associative
- TLB entry
 - contains virtual to physical page number translation

| Virtual Page number | A, P, D, U, V bits | Physical Page number |
TLB

Still 2 memory accesses

Save one memory access

TLB, Caches, Main Memory, Disk