Inference in first-order logic

• Our goal is to prove that KB entails a fact, α
 – We use logical inference
 – Forward chaining
 – Backward chaining
 – Resolution

• All three logical inference systems rely on search to find a sequence of actions that derive the empty clause

Search and forward chaining

• Start with KB full of first-order definite clauses
 – Disjunction of literals with exactly one positive
 • Equivalent to implication with conjunction of positive literals on left (antecedent / body / premise) and one positive literal on right (consequent / head / conclusion)
 • Propositional logic used Horn clauses, which permit zero or one to be positive
 – Look for rules with premises that are satisfied (use substitution to make matches) and add conclusions to KB

Search and forward chaining

• Would other search methods work?
 – Yes, this technique falls in standard domain of all searches
Search and backward chaining

• Start with KB full of implications
 – Find all implications with conclusion matching the query
 – Add to fringe list the unknown premises
 • Adding could be to front or rear of fringe (depth or breadth)

Search and backward chaining

Depth First
 • Are all the premises of I satisfied? No
 – For each (C E G H) are each of their premises satisfied?
 • C? no, put its premises on fringe
 – For each (A and E) are their premises satisfied?
 A… yes
 E… no, add premises for each B and D
 B… yes
 D… yes
 – E, G, H… yes

Breadth First
 • Are all the premises of I satisfied? No
 – For each (C E G H) are each of their premises satisfied?
 • C? no, put its premises on fringe end
 – E? no, put its premises on fringe end
 – G, H… yes
 – Are C’s premises (A E) satisfied?
 A… yes
 E… no, add premises
 – Are E’s premises (B D) satisfied?
 Yes
 – Return to C and I

Search and backward chaining

Backward/forward chaining

• Don’t explicitly tie search method to chaining direction

Inference with resolution

– We put each first-order sentence into conjunctive normal form
 • We remove quantifiers
 • We make each sentence a disjunction of literals (each literal is universally quantified)
 – We show KB ^ α is unsatisfiable by deriving the empty clause
 • Resolution inference rule is our method
 – Keep resolving until the empty clause is reached

Resolution

• Look for matching sentences
 – Shared literal with opposite sign
 • Substitution may be required
 – [Animal (F(x)) V Loves (G(x), x)] and [-Loves (u,v) V ~Kills (u, v)]
 • F(x) = animal unloved by x
 • G(x) = someone who loves x
Resolution

- What does this mean in English?
 - $[\text{Animal (F(x)) V Loves (G(x), x)}]
 - $F(x) = \text{animal unloved by x}$
 - $G(x) = \text{someone who loves x}$
 - $[\neg\text{Loves (u,v) V \neg\text{Kills (u, v)}]$

- For all people, either a person doesn't love an animal or someone loves the person
- Nobody loves anybody or nobody kills anybody

Example

$\neg\text{American}(x) \vee \neg\text{Weapon}(y) \vee \neg\text{Sale}(x, y, z) \vee \neg\text{Hostile}(z) \vee \text{Criminal}(x),$
$\neg\text{ Missile}(x) \vee \neg\text{Nano}(x, y) \vee \text{Sale}(\text{West}, x, \text{Nano}),$
$\text{Enemy}(x, \text{America}) \vee \text{Hostile}(x),$
$\neg\text{ Missile}(x) \vee \neg\text{Weapon}(x),$
$\text{Nano}(\text{Nano}, M_1), \text{ Missile}(M_1),$
$\text{American(\text{West}), Enemy(\text{Nano, America}).}$

Inference with resolution

- What resolves with what for proof?
 - Unit preference
 - Start with single-literal sentences and resolve them with more complicated sentences
 - Every resolution reduces the size of the sentence by one
 - Consistent with our goal to find a sentence of size 0
 - Resembles forward chaining

Resolution example

- $[\text{Animal (F(x)) V Loves (G(x), x)}]$ and $[\neg\text{Loves (u,v) V \neg\text{Kills (u, v)}]$
 - Loves and \negLoves cancel with substitution
 - $u=G(x)$ and $v=x$
 - Resolvent clause
 - $[\text{Animal (F(x)) V \neg\text{Kills (G(x), x)}]}$

- Set of support
 - Build a special set of sentences
 - Every resolution includes one sentence from set
 - New resolvent is added to set
 - Resembles backward chaining if set of support initialized with negated query
Theorem provers

- Logical inference is a powerful way to “reason” automatically
 - Prover should be independent of KB syntax
 - Prover should use control strategy that is fast
 - Prover can support a human by
 - Checking a proof by filling in voids
 - Person can kill off search even if semi-decidable

Practical theorem provers

- Boyer-Moore
 - First rigorous proof of Gödel Incompleteness Theorem
- OTTER
 - Solved several open questions in combinatorial logic
- EQP
 - Solved Robbins algebra, a proof of axioms required for Boolean algebra
 - Problem posed in 1933 and solved in 1997 after eight days of computation

Practical theorem provers

- Verification and synthesis of hard/soft ware
 - Software
 - Verify a program’s output is correct for all inputs
 - There exists a program, P, that satisfies a specification
 - Hardware
 - Verify that interactions between signals and circuits is robust
 - Will CPU work in all conditions?
 - There exists a circuit, C, that satisfies a specification

Statistical Learning Methods

- Chapter 20
 - Statistical learning (Bayes, maximum likelihood)
 - Hidden variables (expectation maximization, Markov models)
 - Instance-based (Nearest neighbor)
 - Neural networks

Rational agents

- Up until now
 - Many rules were available and rationality was piecing rules together to accomplish a goal
 - Inference and deduction
- Now
 - Lots of data available (cause/effect pairs) and rationality is improving performance with data
 - Model building, generalization, prediction

How early will my son be born?

- Logic from first principles
 - I think he will be born tomorrow
 - 20 literals corresponding to 20 dates
 - Well-fed (mom(x)) => late(x)
 - late(x) ^ impatient(father(x)) => thisWeekend (x)
 - late(x) ^ impatient(mother(x)) => tomorrow(x)
 - ...
How early will my son be born?

- Statistical Learning
 - Histogram of births
 - Data from family tree
 - Multidimensional correlations between early and ethnicity
 - ...

Function Approximator

- Build a function that maps input to output
 - Start with a model of function
 - Use statistics to set values of coefficients
 - Pick m and b such that line defined by terms minimizes the sum of distances between each observed (x, y) and $(x, f(x))$

\[f(x) = mx + b = y \]

Slightly more complicated

- Parabola
 - Select a, b, c
 - Goal is $y - ax^2 - bx - c = 0$
 - If we have three points and three unknowns we can solve
 - If we have more points we must use another technique

Mappings

- These function approximators are mappings
 - They map inputs to outputs
 - We hope the outputs match similar observations
 - The mappings become better with more information
 - This is what neural networks do
 - But the beauty of neural networks is in how they do what they do

Neural Networks

- Biologically inspired
 - We have neurons in our bodies that transmit signals based on inputs
 - Internal dynamics dependent on chemical gradients
 - Connections between neurons are important
 - Tolerates noisy input
 - Tolerates partial destruction
 - Perform distributed computation

Neural Networks

- Synthetic
 - A neural network unit accepts a vector as input and generates a scalar output dependent on activation function
 - Links within network controlled through weights