Markov decision processes (MDP)

• Initial State
 - \(S_0 \)
• Transition Model
 - \(T(s, a, s') \)
 - How does Markov apply here?
 - Uncertainty is possible
• Reward Function
 - \(R(s) \)
 - For each state

Building an optimal policy

• Value Iteration
 - Calculate the utility of each state
 - Use the state utilities to select an optimal action in each state
 - Your policy is simple – go to the state with the best utility
 - Your state utilities must be accurate
 - Through an iterative process you assign correct values to the state utility values

Iterative solution of Bellman equations

- Start with arbitrary initial values for state utilities
- Update the utility of each state as a function of its neighbors

\[
U(s) = R(s) + \gamma \max \sum T(s, a, s') U(s')
\]

Example

- Let \(\gamma = 1 \) and \(R(s) = -0.04 \)

Notice:
- Utilities higher near goal reflecting fewer -0.04 steps in sum

Building a policy

- How might we acquire and store a solution?
 - Is this a search problem?
 - Isn’t everything?
 - Avoid local mins
 - Avoid dead ends
 - Avoid needless repetition

Key observation: if the number of states is small, consider evaluating states rather than evaluating action sequences
Policy Iteration

• Imagine someone gave you a policy
 – How good is it?
 • Assume we know γ and R
 • Eyeball it?
 • Try a few paths and see how it works?
 • Let’s be more precise…

Policy iteration

• Checking a policy
 – Just for kicks, let’s compute a utility (at this particular iteration of the policy, i) for each state according to Bellman’s equation

\[U_i(s) = R(s) + \gamma \sum_{s'} T(s, \pi_i(s), s')U_i(s') \]

Policy iteration

• Checking a policy
 – But we don’t know $U_i(s')$
 – No problem
 • n Bellman equations
 • n unknowns
 • equations are linear (in value iteration, the equations had the non-linear “max” term)
 – We can solve for the n unknowns in $O(n^3)$ time using standard linear algebra methods

Policy Iteration

• Often the most efficient approach
 – Requires small state spaces to be tractable: $O(n^2)$
 – Approximations are possible
 • Rather than solve for U exactly, approximate with a speedy iterative technique
 • Explore (update the policy of) only a subset of total state space
 – Don’t bother updating parts you think are bad

Can MDPs be used in real situations?

• Remember our assumptions
 – We know what state we are in, s
 – We know the reward at s
 – We know the available actions, a
 – We know the transition function, $t(s, a, s')$
Is life fully observable?

- We don’t always know what state we are in
 - Frequently, the environment is partially observable
 - agent cannot look up action, $\pi(s)$
 - agent cannot calculate utilities

We can build a model of the state uncertainty and we call them
Partially Observable MDPs (POMDPs)

Our robot problem as a POMDP

- No knowledge of state
 - Robot has no idea of what state it is in
 - What’s a good policy?

- The “Drunken Hoo” strategy

Observation Model

- To help model uncertainty
 - Observation Model, $O(s, o)$
 - specifies the probability of perceiving the observation o when in state s
 - In our example, $O()$ returns nothing with prob. 1

Belief state

- To help model uncertainty
 - A belief state, b
 - the probability distribution over being in each state, $b(s)$
 - initial $b = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)$
 - $b(s)$ will be updated with each new observation / action

\[b(s) \] normalizes equation so b sums to 1.0
\[b(s) = \alpha O(s, a) \sum_{s'} F(s,a,s') b(s') \]

Insight about POMDPs

- Beliefs are more important than reality
 - Optimal action will depend on agent’s belief state
 - not its actual state
 - $\pi'(b)$ maps belief state to actions
 - Think about “The Matrix”

POMDP agent

- A POMDP agent iterates through following steps
 - Given current belief state, b, execute the action $a = \pi'(b)$
 - Receive the observation o
 - Use a and o to update the belief state
 - Repeat
Mapping MDPs to POMDPs

- What is the probability an agent transitions from one belief state to another after action \(a \)?
 - We would have to execute the action to obtain the new observation if we were to use this equation
 \[
 b'(x) = O(x, a) \sum_s T(s, a, s') b(s)
 \]
 - Instead, use conditional probabilities to construct \(b' \) by summing over all states agent might reach

Predicting future observation

- Prob of perceiving \(o \) given
 - starting in belief state \(b \)
 - action \(a \) was executed
 - \(s' \) is the set of potentially reached states

\[
\begin{align*}
P(o|a, b) &= \sum_{s'} P(o|a, s') P(s'|a, b) \\
&= \sum_{s'} O(s', o) P(s'|a, b) \\
&= \sum_{s'} O(s', o) \sum_s T(s, a, s') b(s)
\end{align*}
\]

Predicting new belief state

- Previously we predicted observation…
 Now predict new belief state
 - \(\tau(b, a, b') \)
 - prob of reaching \(b' \) from \(b \) given action \(a \)

\[
\begin{align*}
\tau(b, a, b') &= P(b'|a, b) = \sum_{s'} P(b'|s, a, b) P(s'|a, b) \\
&= \sum_{s'} P(b'|s, a, b) \sum_s O(s', o) \sum_s T(s, a, s') b(s)
\end{align*}
\]
 - This is a transition model for belief states

Computing rewards for belief states

- We saw that \(R(s) \) was required…
 - How about \(R(b) \)?
 - call it \(\rho(b) \)

\[
\rho(b) = \sum_s b(s) R(s)
\]

Pulling it together

- We’ve defined an observable MDP to model this POMDP
 - \(\tau(b, a, b') \) and \(\rho(b) \) replace \(t(s, a, s') \) and \(R(s) \)
 - The optimal policy, \(\pi^*(b) \) is also an optimal policy for the original POMDP

An important distinction

- The “state” is continuous in this representation
 - The belief state of the 4x3 puzzle consists of a vector of 11 numbers (one cell is an obstacle) between 0 and 1
 - The state in our older problems was a discrete cell ID
 - We cannot reuse the exact value/policy iteration algorithms
 - “Summing” over states is now impossible
 - There are ways to make them work, though
Truth in advertising

• Finding optimal strategies is slow
 – It is intractable for problems with a few dozen states