Hidden Markov Models

- An attempt to understand Markov Processes
 - We know the state of the system at an instant
 - state \(x_1, x_2, \ldots, x_n \) at times \(t_1, t_2, \ldots, t_n \)
 - Transitions to new states are only dependent on the current state
 - Use a matrix, \(A \) to represent transitions
 - The transitions between states are well understood
 - All elements of \(j \) are \(\geq 0 \) and \(\leq 1 \)
 - Parameters are time independent

Transition model

- A matrix called \(A \)
 - \(a_{(i,j)} = P(\text{system in state } j | \text{system was in state } i) \)

Transitions Matrix

- What if states aren’t observable?
 - \(b_{(j,k)} = \text{Probability} (k \text{ is observed } | \text{system in state } j) \)
 - Use seaweed as an indicator of weather
 - Seaweed is dry, dryish, damp, soggy
 - New matrix is
 \[
 B = \begin{pmatrix}
 0.6 & 0.2 & 0.15 & 0.05 \\
 0.25 & 0.25 & 0.25 & 0.25 \\
 0.05 & 0.1 & 0.35 & 0.5 \\
 \end{pmatrix}
 \]

What’s the hidden part?

- There is a disconnect between the states you’ve created and the true states you are modeling
 - The state of seaweed may or may not be well correlated to tomorrow’s weather
 - If it works, it works!
HMM questions

- given a model and a sequence of observations, what is the probability that the model actually generated those observations
- if we had two models $\lambda_1 = (\pi_1, A_1, B_1)$ and $\lambda_2 = (\pi_2, A_2, B_2)$, which one better describes a sequence of given observations
- Can we automatically improve a model to better fit observations?
 * adjust model parameters $\lambda = (\pi, A, B)$ to maximize $P(O | \lambda)$

Speech Recognition

- Understanding Spoken Language
 - Input is a signal (frequency over time)
 - Output is a sequence of words

HMM for speech

- Words are made of phonemes
 - Well-defined categorization of sounds
 - English has 45 +/- 4 phonemes
 - English has 600 ways to spell these 45 sounds
 - Could these be the hidden states behind predicting what words are pronounced?

An HMM for each word?

- Build a sequence of states that model a transition from saying nothing to saying “had your”
 - Segmentaion is a tough issue
 * silence, end/beginning of words, end/beginning of phonemes