GNU Zebra

A routing software package for TCP/IP networks
Zebra version 0.93b
September 2002

Kunihiro Ishiguro

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by Kunihiro Ishiguro.
1 Overview

Zebra is a routing software package that provides TCP/IP based routing services with routing protocols support such as RIPv1, RIPv2, RIPng, OSPFv2, OSPFv3, BGP-4, and BGP-4+ (see Section 1.4 [Supported RFC], page 3). Zebra also supports special BGP Route Reflector and Route Server behavior. In addition to traditional IPv4 routing protocols, Zebra also supports IPv6 routing protocols. With SNMP daemon which supports SMUX protocol, Zebra provides routing protocol MIBs (see Chapter 15 [SNMP Support], page 75).

Zebra uses an advanced software architecture to provide you with a high quality, multi server routing engine. Zebra has an interactive user interface for each routing protocol and supports common client commands. Due to this design, you can add new protocol daemons to Zebra easily. You can use Zebra library as your program’s client user interface.

Zebra is an official GNU software and distributed under the GNU General Public License.

1.1 About Zebra

Today, TCP/IP networks are covering all of the world. The Internet has been deployed in many countries, companies, and to the home. When you connect to the Internet your packet will pass many routers which have TCP/IP routing functionality.

A system with Zebra installed acts as a dedicated router. With Zebra, your machine exchanges routing information with other routers using routing protocols. Zebra uses this information to update the kernel routing table so that the right data goes to the right place. You can dynamically change the configuration and you may view routing table information from the Zebra terminal interface.

Adding to routing protocol support, Zebra can setup interface’s flags, interface’s address, static routes and so on. If you have a small network, or a stub network, or xDSL connection, configuring the Zebra routing software is very easy. The only thing you have to do is to set up the interfaces and put a few commands about static routes and/or default routes. If the network is rather large, or if the network structure changes frequently, you will want to take advantage of Zebra’s dynamic routing protocol support for protocols such as RIP, OSPF or BGP. Zebra is with you.

Traditionally, UNIX based router configuration is done by ifconfig and route commands. Status of routing table is displayed by netstat utility. Almost of these commands work only if the user has root privileges. Zebra has a different system administration method. There are two user modes in Zebra. One is normal mode, the other is enable mode. Normal mode user can only view system status, enable mode user can change system configuration. This UNIX account independent feature will be great help to the router administrator.

Currently, Zebra supports common unicast routing protocols. Multicast routing protocols such as BGMP, PIM-SM, PIM-DM will be supported in Zebra 2.0. MPLS support is going on. In the future, TCP/IP filtering control, QoS control, diffserv configuration will be added to Zebra. Zebra project’s final goal is making a productive, quality free TCP/IP routing software.
1.2 System Architecture

Traditional routing software is made as a one process program which provides all of the routing protocol functionalities. Zebra takes a different approach. It is made from a collection of several daemons that work together to build the routing table. There may be several protocol-specific routing daemons and zebra the kernel routing manager.

The ripd daemon handles the RIP protocol, while ospfd is a daemon which supports OSPF version 2. bgpd supports the BGP-4 protocol. For changing the kernel routing table and for redistribution of routes between different routing protocols, there is a kernel routing table manager zebra daemon. It is easy to add a new routing protocol daemons to the entire routing system without affecting any other software. You need to run only the protocol daemon associated with routing protocols in use. Thus, user may run a specific daemon and send routing reports to a central routing console.

There is no need for these daemons to be running on the same machine. You can even run several same protocol daemons on the same machine. This architecture creates new possibilities for the routing system.

Zebra System Architecture

Multi-process architecture brings extensibility, modularity and maintainability. At the same time it also brings many configuration files and terminal interfaces. Each daemon has it’s own configuration file and terminal interface. When you configure a static route, it must be done in zebra configuration file. When you configure BGP network it must be done in bgpd configuration file. This can be a very annoying thing. To resolve the problem, Zebra provides integrated user interface shell called vtysh. vtysh connects to each daemon with UNIX domain socket and then works as a proxy for user input.

Zebra was planned to use multi-threaded mechanism when it runs with a kernel that supports multi-threads. But at the moment, the thread library which comes with GNU/Linux or FreeBSD has some problems with running reliable services such as routing software, so we don’t use threads at all. Instead we use the select(2) system call for multiplexing the events.

When zebra runs under a GNU Hurd kernel it will act as a kernel routing table itself. Under GNU Hurd, all TCP/IP services are provided by user processes called pfinet. Zebra will provide all the routing selection mechanisms for the process. This feature will be implemented when GNU Hurd becomes stable.
1.3 Supported Platforms

Currently Zebra supports GNU/Linux, BSD and Solaris. Below is a list of OS versions on which Zebra runs. Porting Zebra to other platforms is not so too difficult. Platform dependent codes exist only in zebra daemon. Protocol daemons are platform independent. Please let us know when you find out Zebra runs on a platform which is not listed below.

- GNU/Linux 2.0.37
- GNU/Linux 2.2.x
- GNU/Linux 2.3.x
- FreeBSD 2.2.8
- FreeBSD 3.x
- FreeBSD 4.x
- NetBSD 1.4
- OpenBSD 2.5
- Solaris 2.6
- Solaris 7

Some IPv6 stacks are in development. Zebra supports following IPv6 stacks. For BSD, we recommend KAME IPv6 stack. Solaris IPv6 stack is not yet supported.

- Linux IPv6 stack for GNU/Linux 2.2.x and higher.
- KAME IPv6 stack for BSD.
- INRIA IPv6 stack for BSD.

1.4 Supported RFC

Below is the list of currently supported RFC’s.

1.5 How to get Zebra

Zebra is still beta software and there is no officially released version. So currently Zebra is distributed from Zebra beta ftp site located at:

ftp://ftp.zebra.org/pub/zebra

Once Zebra is released you can get it from GNU FTP site and its mirror sites. We are planning Zebra-1.0 as the first released version.

Zebra’s official web page is located at:

There is a Zebra beta tester web page at:
http://www.zebra.org/.

You can get the latest beta software information from this page.

1.6 Mailing List

There is a mailing list for discussions about Zebra. If you have any comments or suggestions to Zebra, please send mail to zebra@zebra.org. New snapshot announcements, improvement notes, and patches are sent to the list.

To subscribe to the Zebra mailing list, please send a mail to majordomo@zebra.org with a message body that includes only:

subscribe zebra

To unsubscribe from the list, please send a mail to majordomo@zebra.org with a message body that includes only:

unsubscribe zebra
1.7 Bug Reports

If you think you have found a bug, please send a bug report to bug-zebra@gnu.org. When you send a bug report, please be careful about the points below.

- Please note what kind of OS you are using. If you use the IPv6 stack please note that as well.
- Please show us the results of `netstat -rn` and `ifconfig -a`. Information from zebra’s VTY command `show ip route` will also be helpful.
- Please send your configuration file with the report. If you specify arguments to the configure script please note that too.

Bug reports are very important for us to improve the quality of Zebra. Zebra is still in the development stage, but please don’t hesitate to send a bug report to bug-zebra@gnu.org.
2 Installation

There are three steps for installing the software: configuration, compilation, and installation.

The easiest way to get Zebra running is to issue the following commands:

 \% configure
 \% make
 \% make install

2.1 Configure the Software

Zebra has an excellent configure script which automatically detects most host configurations. There are several additional configure options you can use to turn off IPv6 support, to disable the compilation of specific daemons, and to enable SNMP support.

'--enable-guile'
 Turn on compilation of the zebra-guile interpreter. You will need the guile library to make this. zebra-guile implementation is not yet finished. So this option is only useful for zebra-guile developers.

'--disable-ipv6'
 Turn off IPv6 related features and daemons. Zebra configure script automatically detects IPv6 stack. But sometimes you might want to disable IPv6 support of Zebra.

'--disable-zebra'
 Do not build zebra daemon.

'--disable-ripd'
 Do not build ripd.

'--disable-ripngd'
 Do not build ripngd.

'--disable-ospfd'
 Do not build ospfd.

'--disable-ospf6d'
 Do not build ospf6d.

'--disable-bgp'
 Do not build bgpd.

'--disable-bgp-announce'
 Make bgpd which does not make bgp announcements at all. This feature is good for using bgpd as a BGP announcement listener.

'--enable-netlink'
 Force to enable GNU/Linux netlink interface. Zebra configure script detects netlink interface by checking a header file. When the header file does not match to the current running kernel, configure script will not turn on netlink support.
GNU Zebra

'--enable-snmp'
Enable SNMP support. By default, SNMP support is disabled.

You may specify any combination of the above options to the configure script. By default, the executables are placed in '/usr/local/sbin' and the configuration files in '/usr/local/etc'. The '/usr/local/' installation prefix and other directories may be changed using the following options to the configuration script.

'--prefix=prefix'
Install architecture-independent files in prefix [/usr/local].

'--sysconfdir=dir'
Read-only sample configuration file in dir [prefix/etc].

% ./configure --disable-ipv6
This command will configure zebra and the routing daemons.

There are several options available only to GNU/Linux systems:

2.2 Build the Software

After configuring the software, you will need to compile it for your system. Simply issue the command make in the root of the source directory and the software will be compiled. If you have *any* problems at this stage, be certain to send a bug report See Section 1.7 [Bug Reports], page 5.

% ./configure
.
.
./configure output
.
.
% make

1 GNU/Linux has very flexible kernel configuration features. If you use GNU/Linux, make sure that the current kernel configuration is what you want. Zebra will run with any kernel configuration but some recommendations do exist.

CONFIG_NETLINK
Kernel/User netlink socket. This is a brand new feature which enables an advanced interface between the Linux kernel and Zebra (see Chapter 14 [Kernel Interface], page 73).

CONFIG_RTNETLINK
Routing messages. This makes it possible to receive netlink routing messages. If you specify this option, zebra can detect routing information updates directly from the kernel (see Chapter 14 [Kernel Interface], page 73).

CONFIG_IP_MULTICAST
IP: multicasting. This option should be specified when you use ripd or ospfd because these protocols use multicast.

IPv6 support has been added in GNU/Linux kernel version 2.2. If you try to use the Zebra IPv6 feature on a GNU/Linux kernel, please make sure the following libraries have been installed. Please note that these libraries will not be needed when you uses GNU C library 2.1 or upper.

inet6-apps
The inet6-apps package includes basic IPv6 related libraries such as inet_ntop and inet_pton. Some basic IPv6 programs such as ping, ftp, and inetd are also included.

inet-apps
The inet-apps can be found at ftp://ftp.inner.net/pub/ipv6/.

The net-tools package provides an IPv6 enabled interface and routing utilities. It contains ifconfig, route, netstat, and other tools. net-tools may be found at http://www.tazenda.demon.co.uk/phil/net-tools/.
2.3 Install the Software

Installing the software to your system consists of copying the compiled programs and supporting files to a standard location. After the installation process has completed, these files have been copied from your work directory to ‘/usr/local/bin’, and ‘/usr/local/etc’.

To install the Zebra suite, issue the following command at your shell prompt: make install.

```
% make install
%
```

Zebra daemons have their own terminal interface or VTY. After installation, you have to setup each beast’s port number to connect to them. Please add the following entries to ‘/etc/services’.

```
zebrasrv 2600/tcp  # zebra service
zebra 2601/tcp  # zebra vty
ripd 2602/tcp  # RIPd vty
ripngd 2603/tcp  # RIPngd vty
ospfd 2604/tcp  # OSPFd vty
bgpd 2605/tcp  # BGPD vty
ospf6d 2606/tcp  # OSPF6d vty
```

If you use a FreeBSD newer than 2.2.8, the above entries are already added to ‘/etc/services’ so there is no need to add it. If you specify a port number when starting the daemon, these entries may not be needed.

You may need to make changes to the config files in ‘/usr/local/etc/*.conf’. See Section 3.1 [Config Commands], page 11.
3 Basic commands

There are five routing daemons in use, and there is one manager daemon. These daemons may be located on separate machines from the manager daemon. Each of these daemons will listen on a particular port for incoming VTY connections. The routing daemons are:

- ripd, ripngd, ospfd, ospf6d, bgpd
- zebra

The following sections discuss commands common to all the routing daemons.

3.1 Config Commands

In a config file, you can write the debugging options, a vty’s password, routing daemon configurations, a log file name, and so forth. This information forms the initial command set for a routing beast as it is starting.

Config files are generally found in:

`/usr/local/etc/*.conf`

Each of the daemons has its own config file. For example, zebra’s default config file name is:

`/usr/local/etc/zebra.conf`

The daemon name plus `.conf` is the default config file name. You can specify a config file using the `-f` or `--config-file` options when starting the daemon.

3.1.1 Basic Config Commands

hostname hostname

Set hostname of the router.

password password

Set password for vty interface. If there is no password, a vty won’t accept connections.

enable password password

Set enable password.

log stdout

no log stdout

Set logging output to stdout.

log file filename

If you want to log into a file please specify `filename` as follows.

`log file /usr/local/etc/bgpd.log`

log syslog

no log syslog

Set logging output to syslog.
write terminal
Command
Displays the current configuration to the vty interface.

write file
Command
Write current configuration to configuration file.

configure terminal
Command
Change to configuration mode. This command is the first step to configuration.

terminal length <0-512>
Command
Set terminal display length to <0-512>. If length is 0, no display control is performed.

who
Command
List commands.

list
Command
List commands.

service password-encryption
Command
Encrypt password.

service advanced-vty
Command
Enable advanced mode VTY.

service terminal-length <0-512>
Command
Set system wide line configuration. This configuration command applies to all VTY interfaces.

show version
Command
Show the current version of the Zebra and its build host information.

line vty
Command
Enter vty configuration mode.

banner motd default
Command
Set default motd string.

no banner motd
Command
No motd banner string will be printed.

exec-timeout minute
Line Command
Set VTY connection timeout value. When only one argument is specified it is used for timeout value in minutes. Optional second argument is used for timeout value in seconds. Default timeout value is 10 minutes. When timeout value is zero, it means no timeout.

no exec-timeout
Line Command
Do not perform timeout at all. This command is as same as `exec-timeout 0 0`.

access-class access-list
Line Command
Restrict vty connections with an access list.
3.1.2 Sample Config File

Below is a sample configuration file for the zebra daemon.

```plaintext
! 
! Zebra configuration file 
! hostname Router 
password zebra 
enable password zebra 
! 
log stdout 
!
```

'!' and '##' are comment characters. If the first character of the word is one of the comment characters then from the rest of the line forward will be ignored as a comment.

```plaintext
password zebra!password
```

If a comment character is not the first character of the word, it’s a normal character. So in the above example '!' will not be regarded as a comment and the password is set to 'zebra!password'.

3.2 Common Invocation Options

These options apply to all Zebra daemons.

`'--daemon'`
Runs in daemon mode.

`'--config_file=file'`
Set configuration file name.

`'--help'`
Display this help and exit.

`'--pid_file=file'`
Upon startup the process identifier of the daemon is written to a file, typically in '/var/run'. This file can be used by the init system to implement commands such as `.../init.d/zebra status`, `.../init.d/zebra restart` or `.../init.d/zebra stop`.
The file name is an run-time option rather than a configure-time option so that multiple routing daemons can be run simultaneously. This is useful when using Zebra to implement a routing looking glass. One machine can be used to collect differing routing views from differing points in the network.

`'--vty_port=port'`
Set the VTY port number.
‘-v’
‘--version’
Print program version.

3.3 Virtual Terminal Interfaces

VTY – Virtual Terminal [aka TeletYpe] Interface is a command line interface (CLI) for user interaction with the routing daemon.

3.3.1 VTY Overview

VTY stands for Virtual TeletYpe interface. It means you can connect to the daemon via the telnet protocol.

To enable a VTY interface, you have to setup a VTY password. If there is no VTY password, one cannot connect to the VTY interface at all.

% telnet localhost 2601
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.

Hello, this is zebra (version 0.93b)
Copyright 1997-2000 Kunihiro Ishiguro

User Access Verification

Password: XXXXX
Router> ?
 enable Turn on privileged commands
 exit Exit current mode and down to previous mode
 help Description of the interactive help system
 list Print command list
 show Show running system information
 who Display who is on a vty

Router> enable
Password: XXXXX
Router# configure terminal
Router(config)# interface eth0
Router(config-if)# ip address 10.0.0.1/8
Router(config-if)# `Z
Router#

’?’ is very useful for looking up commands.

3.3.2 VTY Modes

There are three basic VTY modes:

There are commands that may be restricted to specific VTY modes.
3.3.2.1 VTY View Mode

This mode is for read-only access to the CLI. One may exit the mode by leaving the system, or by entering `enable` mode.

3.3.2.2 VTY Enable Mode

This mode is for read-write access to the CLI. One may exit the mode by leaving the system, or by escaping to view mode.

3.3.2.3 VTY Other Modes

This page is for describing other modes.

3.3.3 VTY CLI Commands

Commands that you may use at the command-line are described in the following three subsubsections.

3.3.3.1 CLI Movement Commands

These commands are used for moving the CLI cursor. The `C` character means press the Control Key.

- `C-f` move forward one character.
- `C-b` move backward one character.
- `M-f` move forward one word.
- `M-b` move backward one word.
- `C-a` move to the beginning of the line.
- `C-e` move to the end of the line.

3.3.3.2 CLI Editing Commands

These commands are used for editing text on a line. The `C` character means press the Control Key.

- `C-h` delete the character before point.
- `C-d` delete the character after point.
- `M-d` forward kill word.
- `C-w` backward kill word.
- `C-k` kill to the end of the line.
- `C-u` kill line from the beginning, erasing input.
- `C-t` transpose character.
3.3.3.3 CLI Advanced Commands

There are several additional CLI commands for command line completions, insta-help, and VTY session management.

- **C-c** Interrupt current input and moves to the next line.
- **C-z** End current configuration session and move to top node.
- **C-n** (DOWN) Move down to next line in the history buffer.
- **C-p** (UP) Move up to previous line in the history buffer.
- **TAB** Use command line completion by typing **TAB**.

You can use command line help by typing **help** at the beginning of the line. Typing **?** at any point in the line will show possible completions.
4 Zebra

zebra is an IP routing manager. It provides kernel routing table updates, interface lookups, and redistribution of routes between different routing protocols.

4.1 Invoking zebra

Besides the common invocation options (see Section 3.2 [Common Invocation Options], page 13), the zebra specific invocation options are listed below.

'\-b' \-batch' Runs in batch mode. zebra parses configuration file and terminates immediately.

'\-k' \-keep_kernel' When zebra starts up, don’t delete old self inserted routes.

'\-l' \-log_mode' Set verbose logging on.

'\-r' \-retain' When program terminates, retain routes added by zebra.

4.2 Interface Commands

interface \ifname\ Command
shutdown Interface Command
no shutdown Interface Command

Up or down the current interface.

ip address \address\ Interface Command

Set ip address for the interface.

description \description\ Interface Command

Set description for the interface.

multicast Interface Command
no multicast Interface Command

Enable or disables multicast flag for the interface.

bandwidth \<1-10000000> Interface Command
no bandwidth \<1-10000000> Interface Command

Set bandwidth value to the interface. This is for calculating OSPF cost. This command does not affect the actual device configuration.
4.3 Static Route Commands

Static routing is a very fundamental feature of routing technology. It defines static prefix and gateway.

ip route network gateway

network is destination prefix with format of A.B.C.D/M. *gateway* is gateway for the prefix. When *gateway* is A.B.C.D format. It is taken as a IPv4 address gateway. Otherwise it is treated as an interface name.

```
ip route 10.0.0.0/8 10.0.0.2
nip route 10.0.0.0/8 ppp0
```

First example defines 10.0.0.0/8 static route with gateway 10.0.0.2. Second one defines the same prefix but with gateway to interface ppp0.

ip route network netmask gateway

This is alternate version of above command. When *network* is A.B.C.D format, user must define *netmask* value with A.B.C.D format. *gateway* is same option as above command.

```
ip route 10.0.0.0 255.255.255.0 10.0.0.2
nip route 10.0.0.0 255.255.255.0 ppp0
```

This is a same setting using this statement.

ip route network gateway distance

Multiple nexthop static route

```
ip route 10.0.0.1/32 10.0.0.2
nip route 10.0.0.1/32 10.0.0.3
nip route 10.0.0.1/32 eth0
```

If there is no route to 10.0.0.2 and 10.0.0.3, and interface eth0 is reachable, then the last route is installed into the kernel.

```
zebra> show ip route
S> 10.0.0.1/32 [1/0] via 10.0.0.2 inactive
          via 10.0.0.3 inactive
          * is directly connected, eth0
```

Floating static route

ipv6 route network gateway

ipv6 route network gateway distance

table tableno

Select the primary kernel routing table to be used. This only works for kernels supporting multiple routing tables (like GNU/Linux 2.2.x and later). After setting *tableno* with this command, static routes defined after this are added to the specified table.
4.4 zebra Terminal Mode Commands

show ip route
Display current routes which zebra holds in its database.

```plaintext
Router# show ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, B - BGP * - FIB route.

K* 0.0.0.0/0           203.181.89.241
S  0.0.0.0/0            203.181.89.1
C* 127.0.0.0/8          10
C* 203.181.89.240/28   eth0
```

show ipv6 route

show interface

show ipforward
Display whether the host's IP forwarding function is enabled or not. Almost any UNIX kernel can be configured with IP forwarding disabled. If so, the box can’t work as a router.

show ipv6forward
Display whether the host's IP v6 forwarding is enabled or not.
5 RIP

RIP – Routing Information Protocol is widely deployed interior gateway protocol. RIP was developed in the 1970s at Xerox Labs as part of the XNS routing protocol. RIP is a distance-vector protocol and is based on the Bellman-Ford algorithms. As a distance-vector protocol, RIP router send updates to its neighbors periodically, thus allowing the convergence to a known topology. In each update, the distance to any given network will be broadcasted to its neighboring router.

ripd supports RIP version 2 as described in RFC2453 and RIP version 1 as described in RFC1058.

5.1 Starting and Stopping ripd

The default configuration file name of ripd's is 'ripd.conf'. When invocation ripd searches directory /usr/local/etc. If 'ripd.conf' is not there next search current directory.

RIP uses UDP port 521 to send and receive RIP packets. So the user must have the capability to bind the port, generally this means that the user must have superuser privileges. RIP protocol requires interface information maintained by zebra daemon. So running zebra is mandatory to run ripd. Thus minimum sequence for running RIP is like below:

zebra -d
ripd -d

Please note that zebra must be invoked before ripd.

To stop ripd. Please use kill 'cat /var/run/ripd.pid'. Certain signals have special meanings to ripd.

'SIGHUP' Reload configuration file 'ripd.conf'. All configurations are reseted. All routes learned so far are cleared and removed from routing table.

'SIGUSR1' Rotate ripd logfile.

'SIGINT' 'SIGTERM' ripd sweeps all installed RIP routes then terminates properly.

ripd invocation options. Common options that can be specified (see Section 3.2 [Common Invocation Options], page 13).

'-r'
'--retain'

When the program terminates, retain routes added by ripd.

5.1.1 RIP netmask

The netmask features of ripd support both version 1 and version 2 of RIP. Version 1 of RIP originally contained no netmask information. In RIP version 1, network classes were originally used to determine the size of the netmask. Class A networks use 8 bits of mask, Class B networks use 16 bits of masks, while Class C networks use 24 bits of mask. Today, the most widely used method of a network mask is assigned to the packet on the basis of the interface that received the packet. Version 2 of RIP supports a variable length subnet mask (VLSM). By extending the subnet mask, the mask can be divided and reused. Each
subnet can be used for different purposes such as large to middle size LANs and WAN links. Zebra ripd does not support the non-sequential netmasks that are included in RIP Version 2.

In a case of similar information with the same prefix and metric, the old information will be suppressed. Ripd does not currently support equal cost multipath routing.

5.2 RIP Configuration

router rip

The `router rip` command is necessary to enable RIP. To disable RIP, use the `no router rip` command. RIP must be enabled before carrying out any of the RIP commands.

no router rip

Disable RIP.

RIP can be configured to process either Version 1 or Version 2 packets, the default mode is Version 2. If no version is specified, then the RIP daemon will default to Version 2. If RIP is set to Version 1, the setting "Version 1" will be displayed, but the setting "Version 2" will not be displayed whether or not Version 2 is set explicitly as the version of RIP being used.

network network

no network network

Set the RIP enable interface by `network`. The interfaces which have addresses matching with `network` are enabled.

This group of commands either enables or disables RIP interfaces between certain numbers of a specified network address. For example, if the network for 10.0.0.0/24 is RIP enabled, this would result in all the addresses from 10.0.0.0 to 10.0.0.255 being enabled for RIP. The `no network` command will disable RIP for the specified network.

network ifname

no network ifname

Set a RIP enabled interface by `ifname`. Both the sending and receiving of RIP packets will be enabled on the port specified in the `network ifname` command. The `no network ifname` command will disable RIP on the specified interface.

neighbor a.b.c.d

no neighbor a.b.c.d

Specify RIP neighbor. When a neighbor doesn’t understand multicast, this command is used to specify neighbors. In some cases, not all routers will be able to understand multicasting, where packets are sent to a network or a group of addresses. In a situation where a neighbor cannot process multicast packets, it is necessary to establish a direct link between routers. The neighbor command allows the network administrator to specify a router as a RIP neighbor. The `no neighbor a.b.c.d` command will disable the RIP neighbor.
Chapter 5: RIP

Below is very simple RIP configuration. Interface `eth0` and interface which address match to `10.0.0.0/8` are RIP enabled.

```
! router rip
    network 10.0.0.0/8
    network eth0

Passive interface

passive-interface IFNAME
no passive-interface IFNAME
```

This command sets the specified interface to passive mode. On passive mode interface, all receiving packets are processed as normal and ripd does not send either multicast or unicast RIP packets except to RIP neighbors specified with `neighbor` command.

RIP version handling

```
version version
```

Set RIP process’s version. `version` can be “1” or “2”.

```
ip rip send version version
```

`version` can be ‘1’, ‘2’, ‘1 2’. This configuration command overrides the router’s rip version setting. The command will enable the selected interface to send packets with RIP Version 1, RIP Version 2, or both. In the case of ‘1 2’, packets will be both broadcast and multicast.

```
ip rip receive version version
```

Version setting for incoming RIP packets. This command will enable the selected interface to receive packets in RIP Version 1, RIP Version 2, or both.

RIP split-horizon

```
ip split-horizon
no ip split-horizon
```

Control split-horizon on the interface. Default is `ip split-horizon`. If you don’t perform split-horizon on the interface, please specify `no ip split-horizon`.

5.3 How to Announce RIP route

```
redistribute kernel
redistribute kernel metric <0-16>
redistribute kernel route-map route-map
no redistribute kernel
```

`redistribute kernel` redistributes routing information from kernel route entries into the RIP tables. `no redistribute kernel` disables the routes.
redistribute static
redistribute static metric <0-16>
redistribute static route-map route-map
no redistribute static
 redistribute static redistributes routing information from static route entries into
 the RIP tables. no redistribute static disables the routes.

redistribute connected
redistribute connected metric <0-16>
redistribute connected route-map route-map
no redistribute connected
 Redistribute connected routes into the RIP tables. no redistribute connected dis-
 ables the connected routes in the RIP tables. This command redistribute connected
 of the interface which RIP disabled. The connected route on RIP enabled interface
 is announced by default.

redistribute ospf
redistribute ospf metric <0-16>
redistribute ospf route-map route-map
no redistribute ospf
 redistribute ospf redistributes routing information from ospf route entries into the
 RIP tables. no redistribute ospf disables the routes.

redistribute bgp
redistribute bgp metric <0-16>
redistribute bgp route-map route-map
no redistribute bgp
 redistribute bgp redistributes routing information from bgp route entries into the
 RIP tables. no redistribute bgp disables the routes.

If you want to specify RIP only static routes:

default-information originate
route a.b.c.d/m
no route a.b.c.d/m
 This command is specific to Zebra. The route command makes a static route only
 inside RIP. This command should be used only by advanced users who are particularly
 knowledgeable about the RIP protocol. In most cases, we recommend creating a static
 route in Zebra and redistributing it in RIP using redistribute static.

5.4 Filtering RIP Routes

RIP routes can be filtered by a distribute-list.

distribute-list access-list direct ifname
 You can apply access lists to the interface with a distribute-list command. access-list
 is the access list name. direct is ‘in’ or ‘out’. If direct is ‘in’ the access list
 is applied to input packets.
Chapter 5: RIP

The `distribute-list` command can be used to filter the RIP path. `distribute-list` can apply access-lists to a chosen interface. First, one should specify the access-list. Next, the name of the access-list is used in the distribute-list command. For example, in the following configuration `eth0` will permit only the paths that match the route 10.0.0.0/8

```conf
router rip
distribute-list private in eth0
access-list private permit 10 10.0.0.0/8
access-list private deny any
```

`distribute-list` can be applied to both incoming and outgoing data.

The `distribute-list prefix prefix_list (in|out) ifname` Command

You can apply prefix lists to the interface with a `distribute-list` command. `prefix_list` is the prefix list name. Next is the direction of `in` or `out`. If `direct` is `in` the access-list is applied to input packets.

5.5 RIP Metric Manipulation

RIP metric is a value for distance for the network. Usually `ripd` increment the metric when the network information is received. Redistributed routes’ metric is set to 1.

The `default-metric <1-16>` RIP command

The `no default-metric <1-16>` RIP command

This command modifies the default metric value for redistributed routes. The default value is 1. This command does not affect connected route even if it is redistributed by `redistribute connected`. To modify connected route’s metric value, please use `redistribute connected metric` or `route-map offset-list also affects connected routes.

The `offset-list access-list (in|out)` RIP command

The `offset-list access-list (in|out) ifname` RIP command

5.6 RIP distance

Distance value is used in zebra daemon. Default RIP distance is 120.

The `distance <1-255>` RIP command

The `no distance <1-255>` RIP command

Set default RIP distance to specified value.

The `distance <1-255> A.B.C.D/M` RIP command

The `no distance <1-255> A.B.C.D/M` RIP command

Set default RIP distance to specified value when the route’s source IP address matches the specified prefix.
distance \(1-255\) \(A.B.C.D/M\) access-list
no distance \(1-255\) \(A.B.C.D/M\) access-list

RIP command

Set default RIP distance to specified value when the route’s source IP address matches the specified prefix and the specified access-list.

5.7 RIP route-map

Usage of `ripd`'s route-map support.

Optional argument route-map MAP_NAME can be added to each `redistribute` statement.

```
redistribute static [route-map MAP_NAME]
redistribute connected [route-map MAP_NAME]
```

Cisco applies route-map _before_ routes will exported to rip route table. In current Zebra’s test implementation, `ripd` applies route-map after routes are listed in the route table and before routes will be announced to an interface (something like output filter). I think it is not so clear, but it is draft and it may be changed at future.

Route-map statement (see Chapter 12 [Route Map], page 69) is needed to use route-map functionality.

match interface word
match ip address word
match ip address prefix-list word
match ip next-hop A.B.C.D
match metric \(<0-4294967295>\)
set ip next-hop A.B.C.D

Route Map

This command match to incoming interface. Notation of this match is different from Cisco. Cisco uses a list of interfaces - NAME1 NAME2 ... NAMEN. Ripd allows only one name (maybe will change in the future). Next - Cisco means interface which includes next-hop of routes (it is somewhat similar to "ip next-hop" statement). Ripd means interface where this route will be sent. This difference is because "next-hop" of same routes which sends to different interfaces must be different. Maybe it’d be better to made new matches - say "match interface-out NAME" or something like that.

Match if route destination is permitted by access-list.

Cisco uses here \(<access-list>\), `ripd` IPv4 address. Match if route has this next-hop (meaning next-hop listed in the rip route table - "show ip rip")

This command match to the metric value of RIP updates. For other protocol compatibility metric range is shown as \(<0-4294967295>\). But for RIP protocol only the value range \(<0-16>\) make sense.

This command set next hop value in RIPv2 protocol. This command does not affect RIPv1 because there is no next hop field in the packet.
set metric <0-4294967295> Route Map
Set a metric for matched route when sending announcement. The metric value range is very large for compatibility with other protocols. For RIP, valid metric values are from 1 to 16.

5.8 RIP Authentication

ip rip authentication mode md5 Interface command
no ip rip authentication mode md5 Interface command
Set the interface with RIPv2 MD5 authentication.

ip rip authentication mode text Interface command
no ip rip authentication mode text Interface command
Set the interface with RIPv2 simple password authentication.

ip rip authentication string string Interface command
no ip rip authentication string string Interface command
RIP version 2 has simple text authentication. This command sets authentication string. The string must be shorter than 16 characters.

ip rip authentication key-chain key-chain Interface command
no ip rip authentication key-chain key-chain Interface command
Specify Keyed MD5 chain.

!
key chain test
key 1
key-string test
!
interface eth1
ip rip authentication mode md5
ip rip authentication key-chain test
!

5.9 RIP Timers

timers basic update timeout garbage RIP command
RIP protocol has several timers. User can configure those timers’ values by timers basic command.
The default settings for the timers are as follows:

- The update timer is 30 seconds. Every update timer seconds, the RIP process is awakened to send an unsolicited Response message containing the complete routing table to all neighboring RIP routers.
- The timeout timer is 180 seconds. Upon expiration of the timeout, the route is no longer valid; however, it is retained in the routing table for a short time so that neighbors can be notified that the route has been dropped.
The garbage collect timer is 120 seconds. Upon expiration of the garbage-collection timer, the route is finally removed from the routing table.

The `timers basic` command allows the default values of the timers listed above to be changed.

no timers basic

The `no timers basic` command will reset the timers to the default settings listed above.

5.10 Show RIP Information

To display RIP routes.

show ip rip

Show RIP routes.

The command displays all RIP routes. For routes that are received through RIP, this command will display the time the packet was sent and the tag information. This command will also display this information for routes redistributed into RIP.

show ip protocols

The command displays current RIP status. It includes RIP timer, filtering, version, RIP enabled interface and RIP peer information.

```
ripd> show ip protocols
Routing Protocol is "rip"
    Sending updates every 30 seconds with +/-50%, next due in 35 seconds
    Timeout after 180 seconds, garbage collect after 120 seconds
    Outgoing update filter list for all interface is not set
    Incoming update filter list for all interface is not set
    Default redistribution metric is 1
    Redistributing: kernel connected
    Default version control: send version 2, receive version 2
    Interface           Send    Recv
    Routing for Networks:
        eth0
        eth1
        1.1.1.1
        203.181.89.241
    Routing Information Sources:
        Gateway         BadPackets BadRoutes Distance Last Update
```

5.11 RIP Debug Commands

Debug for RIP protocol.

debug rip events

Debug rip events.
debug rip will show RIP events. Sending and receiving packets, timers, and changes in interfaces are events shown with *ripd*.

debug rip packet

Debug rip packet.

debug rip packet will display detailed information about the RIP packets. The origin and port number of the packet as well as a packet dump is shown.

debug rip zebra

Debug rip between zebra communication.

This command will show the communication between *ripd* and *zebra*. The main information will include addition and deletion of paths to the kernel and the sending and receiving of interface information.

show debugging rip

Display *ripd*’s debugging option.

show debugging rip will show all information currently set for *ripd* debug.
6 RIPng

RIPng is an IPv6 reincarnation of the RIP protocol as described in RFC2080. It’s an IPv6 reincarnation of the RIP protocol.

6.1 Invoking ripngd

There are no ripngd specific invocation options. Common options can be specified (see Section 3.2 [Common Invocation Options], page 13).

6.2 ripngd Configuration

Currently ripngd supports the following commands:

- **router ripng**
 Enable RIPng.

- **flush_timer** *time*
 Set flush timer.

- **network** *network*
 Set RIPng enabled interface by *network*

- **network** *ifname*
 Set RIPng enabled interface by *ifname*

- **route** *network*
 Set RIPng static routing announcement of *network*.

- **router zebra**
 This command is the default and does not appear in the configuration. With this statement, RIPng routes go to the zebra daemon.

6.3 ripngd Terminal Mode Commands

- **show ip ripng**
- **show debugging ripng**
- **debug ripng events**
- **debug ripng packet**
- **debug ripng zebra**

6.4 ripngd Filtering Commands

- **distribute-list** *access_list* *(in|out)* *ifname*

You can apply an access-list to the interface using the distribute-list command. *access_list* is an access-list name. *direct* is ‘in’ or ‘out’. If *direct* is ‘in’, the access-list is applied only to incoming packets.

  ```
  distribute-list local-only out sit1
  ```
7 OSPFv2

OSPF version 2 is a routing protocol which described in RFC2328 - OSPF Version 2. OSPF is IGP (Interior Gateway Protocols). Compared with RIP, OSPF can provide scalable network support and faster convergence time. OSPF is widely used in large networks such as ISP backbone and enterprise networks.

7.1 Configuring ospfd

There is no ospfd specific options. Common options can be specified (see Section 3.2 [Common Invocation Options], page 13) to ospfd. ospfd needs interface information from zebra. So please make it sure zebra is running before invoking ospfd.

Like other daemons, ospfd configuration is done in OSPF specific configuration file ‘ospfd.conf’.

7.2 OSPF router

To start OSPF process you have to specify the OSPF router. As of this writing, ospfd does not support multiple OSPF processes.

```sh
router ospf
no router ospf

Enable or disable the OSPF process. ospfd does not yet support multiple OSPF processes. So you can not specify an OSPF process number.

ospf router-id a.b.c.d
no ospf router-id

ospf abr-type type
no ospf abr-type type
type can be cisco|ibm|shortcut|standard

ospf rfc1583compatibility
no ospf rfc1583compatibility

passive interface interface
no passive interface interface

timers spf <0-4294967295> <0-4294967295>
no timers spf

refresh group-limit <0-10000>
refresh per-slice <0-10000>
refresh age-diff <0-10000>

auto-cost reference-bandwidth <1-4294967>
no auto-cost reference-bandwidth

network a.b.c./m area a.b.c.
no network a.b.c./m area <0-4294967295>
no network a.b.c./m area a.b.c.
```

This command specifies the OSPF enabled interface. If the interface has an address of 10.0.0.1/8 then the command below provides network information to the ospf routers.
The network command’s mask length should be the same as the interface address’s mask.
Chapter 7: OSPFv2

7.3 OSPF area

area a.b.c.d range a.b.c.d/m
area <0-4294967295> range a.b.c.d/m
no area a.b.c.d range a.b.c.d/m
no area <0-4294967295> range a.b.c.d/m
area a.b.c.d range IPV4_PREFIX suppress
no area a.b.c.d range IPV4_PREFIX suppress
area a.b.c.d range IPV4_PREFIX substitute

IPV4_PREFIX

no area a.b.c.d range IPV4_PREFIX substitute
area a.b.c.d virtual-link a.b.c.d
area <0-4294967295> virtual-link a.b.c.d
no area a.b.c.d virtual-link a.b.c.d
no area <0-4294967295> virtual-link a.b.c.d
area a.b.c.d shortcut
area <0-4294967295> shortcut
no area a.b.c.d shortcut
no area <0-4294967295> shortcut
area a.b.c.d stub
area <0-4294967295> stub
no area a.b.c.d stub
no area <0-4294967295> stub
area a.b.c.d stub no-summary
area <0-4294967295> stub no-summary
no area a.b.c.d stub no-summary
no area <0-4294967295> stub no-summary
area a.b.c.d default-cost <0-16777215>
no area a.b.c.d default-cost <0-16777215>
area a.b.c.d export-list NAME
area <0-4294967295> export-list NAME
no area a.b.c.d export-list NAME
no area <0-4294967295> export-list NAME
area a.b.c.d import-list NAME
area <0-4294967295> import-list NAME
no area a.b.c.d import-list NAME
no area <0-4294967295> import-list NAME
area a.b.c.d authentication
area <0-4294967295> authentication
no area a.b.c.d authentication
no area <0-4294967295> authentication
area a.b.c.d authentication message-digest
area <0-4294967295> authentication message-digest

OSPF Command

OSPF Command
7.4 OSPF interface

- `ip ospf authentication-key AUTH_KEY`
 Interface Command
- `no ip ospf authentication-key`
 Interface Command
 Set OSPF authentication key to a simple password. After setting `AUTH_KEY`, all OSPF packets are authenticated. `AUTH_KEY` has length up to 8 chars.

- `ip ospf message-digest-key KEYID md5 KEY`
 Interface Command
- `no ip ospf message-digest-key`
 Interface Command
 Set OSPF authentication key to a cryptographic password. The cryptographic algorithm is MD5. `KEYID` identifies secret key used to create the message digest. `KEY` is the actual message digest key up to 16 chars.

- `ip ospf cost <1-65535>`
 Interface Command
- `no ip ospf cost`
 Interface Command
 Set link cost for the specified interface. The cost value is set to router-LSA’s metric field and used for SPF calculation.

- `ip ospf dead-interval <1-65535>`
 Interface Command
- `no ip ospf dead-interval`
 Interface Command
 Set number of seconds for RouterDeadInterval timer value used for Wait Timer and Inactivity Timer. This value must be the same for all routers attached to a common network. The default value is 40 seconds.

- `ip ospf hello-interval <1-65535>`
 Interface Command
- `no ip ospf hello-interval`
 Interface Command
 Set number of seconds for HelloInterval timer value. Setting this value, Hello packet will be sent every timer value seconds on the specified interface. This value must be the same for all routers attached to a common network. The default value is 10 seconds.

- `ip ospf network (broadcast | non-broadcast | point-to-multipoint | point-to-point)`
 Interface Command
- `no ip ospf network`
 Interface Command
 Set explicitly network type for specified interface.

- `ip ospf priority <0-255>`
 Interface Command
- `no ip ospf priority`
 Interface Command
 Set RouterPriority integer value. Setting higher value, router will be more eligible to become Designated Router. Setting the value to 0, router is no longer eligible to Designated Router. The default value is 1.

- `ip ospf retransmit-interval <1-65535>`
 Interface Command
- `no ip ospf retransmit interval`
 Interface Command
 Set number of seconds for RxmtInterval timer value. This value is used when retransmitting Database Description and Link State Request packets. The default value is 5 seconds.
ip ospf transmit-delay
no ip ospf transmit-delay

Set number of seconds for InfTransDelay value. LSAs’ age should be incremented by this value when transmitting. The default value is 1 seconds.
7.5 Redistribute routes to OSPF

redistribute (kernel|connected|static|rip|bgp)
OSPF Command
redistribute (kernel|connected|static|rip|bgp)
OSPF Command
 route-map
 redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
 metric-type (1|2)
 redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
 metric-type (1|2) route-map word
 redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
 metric <0-16777214>
 redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
 metric <0-16777214> route-map word
 redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
 metric-type (1|2) metric <0-16777214> route-map word
 no redistribute (kernel|connected|static|rip|bgp)
 OSPF Command
default-information originate
OSPF Command
default-information originate metric <0-16777214>
OSPF Command
default-information originate metric <0-16777214>
OSPF Command
 metric-type (1|2)
default-information originate metric <0-16777214>
OSPF Command
 metric-type (1|2) route-map word
default-information originate always
OSPF Command
default-information originate always metric
OSPF Command
 <0-16777214>
default-information originate always metric
OSPF Command
 <0-16777214> metric-type (1|2)
default-information originate always metric
OSPF Command
 <0-16777214> metric-type (1|2) route-map word
no default-information originate
OSPF Command
distribute-list NAME out
(kernel|connected|static|rip|ospf
OSPF Command
no distribute-list NAME out
(kernel|connected|static|rip|ospf
OSPF Command
default-metric <0-16777214>
OSPF Command
no default-metric
OSPF Command
distance <1-255>
OSPF Command
no distance <1-255>
OSPF Command
distance ospf (intra-area|inter-area|external) <1-255>
OSPF Command
no distance ospf
OSPF Command
router zebra
Command
no router zebra
Command
7.6 Showing OSPF information

show ip ospf
show ip ospf interface [INTERFACE]
show ip ospf neighbor
show ip ospf neighbor INTERFACE
show ip ospf neighbor detail
show ip ospf neighbor INTERFACE detail
show ip ospf database
show ip ospf database (asbr-summary|external|network|router|summary)
show ip ospf database (asbr-summary|external|network|router|summary) link-state-id
show ip ospf database (asbr-summary|external|network|router|summary) adv-router adv-router
show ip ospf database (asbr-summary|external|network|router|summary) adv-router
show ip ospf database (asbr-summary|external|network|router|summary) link-state-id
show ip ospf database (asbr-summary|external|network|router|summary) self-originate
show ip ospf database (asbr-summary|external|network|router|summary) self-originate
show ip ospf database max-age
show ip ospf database self-originate
show ip ospf refresher
show ip ospf route
7.7 Debugging OSPF

```
  debug ospf packet  Command
                   (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]
  no debug ospf packet  Command
                   (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail]
  debug ospf ism  Command
  no debug ospf ism  Command
  debug ospf nsm  Command
  no debug ospf nsm  Command
  debug ospf lsa  Command
  no debug ospf lsa  Command
  debug ospf zebra  Command
  no debug ospf zebra  Command
  show debugging ospf  Command
```
8 OSPFv3

ospfd is a daemon support OSPF version 3 for IPv6 network. OSPF for IPv6 is described in RFC2740.

8.1 OSPF6 router

```plaintext
router ospf6
router-id a.b.c.d
  Set router’s Router-ID.

interface ifname area area
  Bind interface to specified area, and start sending OSPF packets. area can be specified as 0.
```

8.2 OSPF6 area

Area support for OSPFv3 is not yet implemented.

8.3 OSPF6 interface

```plaintext
ipv6 ospf6 cost COST
  Sets interface’s output cost. Default value is 1.

ipv6 ospf6 hello-interval HELLOINTERVAL
  Sets interface’s Hello Interval. Default 40

ipv6 ospf6 dead-interval DEADINTERVAL
  Sets interface’s Router Dead Interval. Default value is 40.

ipv6 ospf6 retransmit-interval RETRANSMITINTERVAL
  Sets interface’s Rxmt Interval. Default value is 5.

ipv6 ospf6 priority PRIORITY
  Sets interface’s Router Priority. Default value is 1.

ipv6 ospf6 transmit-delay TRANSMITDELAY
  Sets interface’s Inf-Trans-Delay. Default value is 1.
```

8.4 Redistribute routes to OSPF6

```plaintext
redistribute static
redistribute connected
redistribute ripng
```
8.5 Showing OSPF6 information

Command

show ipv6 ospf6 [INSTANCE_ID]

INSTANCE_ID is an optional OSPF instance ID. To see router ID and OSPF instance ID, simply type "show ipv6 ospf6 <cr>".

show ipv6 ospf6 database

This command shows LSA database summary. You can specify the type of LSA.

show ipv6 ospf6 interface

To see OSPF interface configuration like costs.

show ipv6 ospf6 neighbor

Shows state and chosen (Backup) DR of neighbor.

show ipv6 ospf6 request-list A.B.C.D

Shows requestlist of neighbor.

show ipv6 route ospf6

This command shows internal routing table.
9 BGP

BGP stands for a Border Gateway Protocol. The lastest BGP version is 4. It is referred as BGP-4. BGP-4 is one of the Exterior Gateway Protocols and de-fact standard of Inter Domain routing protocol. BGP-4 is described in RFC1771 - A Border Gateway Protocol 4 (BGP-4).

Many extentions are added to RFC1771. RFC2858 - Multiprotocol Extensions for BGP-4 provide multiprotocol support to BGP-4.

9.1 Starting BGP

Default configuration file of bgpd is ‘bgpd.conf’. bgpd searches the current directory first then /usr/local/etc/bgpd.conf. All of bgpd’s command must be configured in ‘bgpd.conf’.

bgpd specific invocation options are described below. Common options may also be specified (see Section 3.2 (Common Invocation Options), page 13).

‘-p PORT’
‘--bgp_port=PORT’
Set the bgp protocol’s port number.

‘-r’
‘--retain’
When program terminates, retain BGP routes added by zebra.

9.2 BGP router

First of all you must configure BGP router with router bgp command. To configure BGP router, you need AS number. AS number is an identification of autonomous system. BGP protocol uses the AS number for detecting whether the BGP connection is internal one or external one.

router bgp asn
Command
Enable a BGP protocol process with the specified asn. After this statement you can input any BGP Commands. You can not create different BGP process under different asn without specifying multiple-instance (see Section 9.13.1 [Multiple instance], page 59).

no router bgp asn
Command
Destroy a BGP protocol process with the specified asn.

bgp router-id A.B.C.D
BGP
This command specifies the router-ID. If bgpd connects to zebra it gets interface and address information. In that case default router ID value is selected as the largest IP Address of the interfaces. When router zebra is not enabled bgpd can’t get interface information so router-id is set to 0.0.0.0. So please set router-id by hand.
9.2.1 BGP distance

```bash
distance bgp <1-255> <1-255> <1-255>
```

This command change distance value of BGP. Each argument is distance value for external routes, internal routes and local routes.

```bash
distance <1-255> A.B.C.D/M
```

BGP

```bash
distance <1-255> A.B.C.D/M word
```

This command set distance value to

9.2.2 BGP decision process

1. Weight check
2. Local preference check.
3. Local route check.
4. AS path length check.
5. Origin check.
6. MED check.

9.3 BGP network

9.3.1 BGP route

```bash
network A.B.C.D/M
```

This command adds the announcement network.

```bash
router bgp 1
network 10.0.0.0/8
```

This configuration example says that network 10.0.0.0/8 will be announced to all neighbors. Some vendors’ routers don’t advertise routes if they aren’t present in their IGP routing tables; `bgp` doesn’t care about IGP routes when announcing its routes.

```bash
no network A.B.C.D/M
```

9.3.2 Route Aggregation

```bash
aggregate-address A.B.C.D/M
```

This command specifies an aggregate address.

```bash
aggregate-address A.B.C.D/M as-set
```

This command specifies an aggregate address. Resulting routes inlude AS set.

```bash
aggregate-address A.B.C.D/M summary-only
```

This command specifies an aggregate address. Aggregated routes will not be announce.

```bash
no aggregate-address A.B.C.D/M
```

BGP
9.3.3 Redistribute to BGP

redistribute kernel
Redistribute kernel route to BGP process.

redistribute static
Redistribute static route to BGP process.

redistribute connected
Redistribute connected route to BGP process.

redistribute rip
Redistribute RIP route to BGP process.

redistribute ospf
Redistribute OSPF route to BGP process.

9.4 BGP Peer

9.4.1 Defining Peer

neighbor peer remote-as asn
Creates a new neighbor whose remote-as is *asn*. *peer* can be an IPv4 address or an IPv6 address.

 router bgp 1
 neighbor 10.0.0.1 remote-as 2

In this case my router, in AS-1, is trying to peer with AS-2 at 10.0.0.1.
This command must be the first command used when configuring a neighbor. If the remote-as is not specified, *bgpd* will complain like this:

> can’t find neighbor 10.0.0.1

9.4.2 BGP Peer commands

In a **router bgp** clause there are neighbor specific configurations required.

neighbor peer shutdown
no neighbor peer shutdown
Shutdown the peer. We can delete the neighbor’s configuration by **no neighbor peer remote-as as-number** but all configuration of the neighbor will be deleted. When you want to preserve the configuration, but want to drop the BGP peer, use this syntax.

neighbor peer ebgp-multihop
no neighbor peer ebgp-multihop
neighbor peer description ...
no neighbor peer description ...
Set description of the peer.
neighbor peer version version
BGP
Set up the neighbor’s BGP version. version can be 4, 4+ or 4-. BGP version 4 is
the default value used for BGP peering. BGP version 4+ means that the neighbor
supports Multiprotocol Extensions for BGP-4. BGP version 4- is similar but the
neighbor speaks the old Internet-Draft revision 00’s Multiprotocol Extensions for
BGP-4. Some routing software is still using this version.

neighbor peer interface ifname
no neighbor peer interface ifname
BGP
BGP
When you connect to a BGP peer over an IPv6 link-local address, you have to specify
the ifname of the interface used for the connection.

neighbor peer next-hop-self
no neighbor peer next-hop-self
BGP
BGP
This command specifies an announced route’s nexthop as being equivalent to the
address of the bgp router.

neighbor peer update-source
no neighbor peer update-source
BGP
BGP
neighbor peer default-originate
no neighbor peer default-originate
BGP
bgpd’s default is to not announce the default route (0.0.0.0/0) even it is in routing
table. When you want to announce default routes to the peer, use this command.

neighbor peer port port
neighbor peer port port
BGP
BGP
neighbor peer send-community
neighbor peer send-community
BGP
BGP
neighbor peer weight weight
no neighbor peer weight weight
BGP
BGP
This command specifies a default weight value for the neighbor’s routes.

neighbor peer maximum-prefix number
no neighbor peer maximum-prefix number
BGP
BGP

9.4.3 Peer filtering

neighbor peer distribute-list name [in|out]
BGP
This command specifies a distribute-list for the peer. direct is ‘in’ or ‘out’.

neighbor peer prefix-list name [in|out]
neighbor peer filter-list name [in|out]
neighbor peer route-map name [in|out]
BGP command
BGP command
BGP
Apply a route-map on the neighbor. direct must be in or out.
9.5 BGP Peer Group

`neighbor word peer-group`
This command defines a new peer group.

`neighbor peer peer-group word`
This command binds specific peer to peer group word.

9.6 BGP Address Family
9.7 Autonomous System

AS (Autonomous System) is one of the essential element of BGP. BGP is a distance vector routing protocol. AS framework provides distance vector metric and loop detection to BGP. RFC1930 - Guidelines for creation, selection, and registration of an Autonomous System (AS) describes how to use AS.

AS number is tow octet digita value. So the value range is from 1 to 65535. AS numbers 64512 through 65535 are defined as private AS numbers. Private AS numbers must not to be advertised in the global Internet.

9.7.1 AS Path Regular Expression

AS path regular expression can be used for displaying BGP routes and AS path access list. AS path regular expression is based on POSIX 1003.2 regular expressions. Following description is just a subset of POSIX regular expression. User can use full POSIX regular expression. Adding to that special character '_-' is added for AS path regular expression.

. Matches any single character.
* Matches 0 or more occurrences of pattern.
+ Matches 1 or more occurrences of pattern.
? Match 0 or 1 occurrences of pattern.
^ Matches the beginning of the line.
$ Matches the end of the line.
_ Character _ has special meanings in AS path regular expression. It matches to space and comma , and AS set delimiter { and } and AS confederation delimiter (and). And it also matches to the beginning of the line and the end of the line. So _ can be used for AS value boundaries match. show ip bgp regexp _7675_ matches to all of BGP routes which as AS number include 7675.

9.7.2 Display BGP Routes by AS Path

To show BGP routes which has specific AS path information show ip bgp command can be used.

show ip bgp regexp line

This commands display BGP routes that matches AS path regular expression line.

9.7.3 AS Path Access List

AS path access list is user defined AS path.

ip as-path access-list word {permit|deny} line

This command defines a new AS path access list.

no ip as-path access-list word
no ip as-path access-list word {permit|deny} line
9.7.4 Using AS Path in Route Map

`match as-path word`
`set as-path prepend as-path`

9.7.5 Private AS Numbers
9.8 BGP Communities Attribute

BGP communities attribute is widely used for implementing policy routing. Network operators can manipulate BGP communities attribute based on their network policy. BGP communities attribute is defined in RFC1997 - BGP Communities Attribute and RFC1998 - An Application of the BGP Community Attribute in Multi-home Routing. It is an optional transitive attribute, therefore local policy can travel through different autonomous system.

Communities attribute is a set of communities values. Each communities value is 4 octet long. The following format is used to define communities value.

\[
\text{AS:VAL} \quad \text{This format represents 4 octet communities value. AS is high order 2 octet in digit format. VAL is low order 2 octet in digit format. This format is useful to define AS oriented policy value. For example, 7675:80 can be used when AS 7675 wants to pass local policy value 80 to neighboring peer.}
\]

\[
\text{internet} \quad \text{internet represents well-known communities value 0.}
\]

\[
\text{no-export} \quad \text{no-export represents well-known communities value NO_EXPORT (0xFFFFFFFF01). All routes carry this value must not be advertised to outside a BGP confederation boundary. If neighboring BGP peer is part of BGP confederation, the peer is considered as inside a BGP confederation boundary, so the route will be announced to the peer.}
\]

\[
\text{no-advertise} \quad \text{no-advertise represents well-known communities value NO_ADVERTISE (0xFFFFFFFF02). All routes carry this value must not be advertise to other BGP peers.}
\]

\[
\text{local-AS} \quad \text{local-AS represents well-known communities value NO_EXPORT_SUBCONFED (0xFFFFFFFF03). All routes carry this value must not be advertised to external BGP peers. Even if the neighboring router is part of confederation, it is considered as external BGP peer, so the route will not be announced to the peer.}
\]

When BGP communities attribute is received, duplicated communities value in the communities attribute is ignored and each communities values are sorted in numerical order.

9.8.1 BGP Community Lists

BGP community list is a user defined BGP communities attribute list. BGP community list can be used for matching or manipulating BGP communities attribute in updates.

There are two types of community list. One is standard community list and another is expanded community list. Standard community list defines communities attribute. Expanded community list defines communities attribute string with regular expression. Standard community list is compiled into binary format when user define it. Standard community list will be directly compared to BGP communities attribute in BGP updates. Therefore the comparison is faster than expanded community list.
ip community-list standard name \{permit|deny\} community
This command defines a new standard community list. community is communities value. The community is compiled into community structure. We can define multiple community list under same name. In that case match will happen user defined order. Once the community list matches to communities attribute in BGP updates it return permit or deny by the community list definition. When there is no matched entry, deny will be returned. When community is empty it matches to any routes.

ip community-list expanded name \{permit|deny\} line
This command defines a new expanded community list. line is a string expression of communities attribute. line can include regular expression to match communities attribute in BGP updates.

no ip community-list name
no ip community-list standard name
no ip community-list expanded name
These commands delete community lists specified by name. All of community lists shares a single name space. So community lists can be removed simpley specifying community lists name.

show ip community-list
show ip community-list name
This command display current community list information. When name is specified the specified community list’s information is shown.

show ip community-list
Named Community standard list CLIST
 permit 7675:80 7675:100 no-export
 deny internet
Named Community expanded list EXPAND
 permit :

show ip community-list CLIST
Named Community standard list CLIST
 permit 7675:80 7675:100 no-export
 deny internet

9.8.2 Numbered BGP Community Lists

When number is used for BGP community list name, the number has special meanings. Community list number in the range from 1 and 99 is standard community list. Community list number in the range from 100 to 199 is expanded community list. These community lists are called as numbered community lists. On the other hand normal community lists is called as named community lists.

ip community-list <1-99> \{permit|deny\} community
This command defines a new community list. <1-99> is standard community list number. Community list name within this range defines standard community list. When community is empty it matches to any routes.
ip community-list <100-199> {permit|deny} community
Command
This command defines a new community list. <100-199> is expanded community list number. Community list name within this range defines expanded community list.

ip community-list name {permit|deny} community
Command
When community list type is not specified, the community list type is automatically detected. If community can be compiled into communities attribute, the community list is defined as a standard community list. Otherwise it is defined as an expanded community list. This feature is left for backward compability. Use of this feature is not recommended.

9.8.3 BGP Community in Route Map

In Route Map (see Chapter 12 [Route Map], page 69), we can match or set BGP communities attribute. Using this feature network operator can implement their network policy based on BGP communities attribute.

Following commands can be used in Route Map.

match community word
match community word exact-match
Route Map
This command perform match to BGP updates using community list word. When the one of BGP communities value match to the one of communities value in community list, it is match. When exact-match keyword is spcified, match happen only when BGP updates have completely same communities value specified in the community list.

set community none
set community community
set community community additive
Route Map
This command manipulate communities value in BGP updates. When none is specified as communities value, it removes entire communities attribute from BGP updates. When community is not none, specified communities value is set to BGP updates. If BGP updates already has BGP communities value, the existing BGP communities value is replaced with specified community value. When additive keyword is specified, community is appended to the existing communities value.

set comm-list word delete
Route Map
This command remove communities value from BGP communities attribute. The word is community list name. When BGP route’s communities value matches to the community list word, the communities value is removed. When all of communities value is removed eventually, the BGP update’s communities attribute is completely removed.

9.8.4 Display BGP Routes by Community

To show BGP routes which has specific BGP communities attribute, show ip bgp command can be used. The community value and community list can be used for show ip bgp command.
show ip bgp community
show ip bgp community community
show ip bgp community community exact-match

show ip bgp community displays BGP routes which has communities attribute. When community is specified, BGP routes that matches community value is displayed. For this command, internet keyword can’t be used for community value. When exact-match is specified, it display only routes that have an exact match.

show ip bgp community-list word
show ip bgp community-list word exact-match

This commands display BGP routes that matches community list word. When exact-match is specified, display only routes that have an exact match.

9.8.5 Using BGP Communities Attribute

Following configuration is the most typical usage of BGP communities attribute. AS 7675 provides upstream Internet connection to AS 100. When following configuration exists in AS 7675, AS 100 networks operator can set local preference in AS 7675 network by setting BGP communities attribute to the updates.

```
router bgp 7675
    neighbor 192.168.0.1 remote-as 100
    neighbor 192.168.0.1 route-map RMAP in

    ip community-list 70 permit 7675:70
    ip community-list 70 deny
    ip community-list 80 permit 7675:80
    ip community-list 80 deny
    ip community-list 90 permit 7675:90
    ip community-list 90 deny

    route-map RMAP permit 10
        match community 70
        set local-preference 70

    route-map RMAP permit 20
        match community 80
        set local-preference 80

    route-map RMAP permit 30
        match community 90
        set local-preference 90
```

Following configuration announce 10.0.0.0/8 from AS 100 to AS 7675. The route has communities value 7675:80 so when above configuration exists in AS 7675, announced route’s local preference will be set to value 80.

```
router bgp 100
    network 10.0.0.0/8
    neighbor 192.168.0.2 remote-as 7675
    neighbor 192.168.0.2 route-map RMAP out
```
ip prefix-list PLIST permit 10.0.0.0/8
!
route-map RMAP permit 10
 match ip address prefix-list PLIST
 set community 7675:80

Following configuration is an example of BGP route filtering using communities attribute. This configuration only permit BGP routes which has BGP communities value 0:80 or 0:90. Network operator can put special internal communities value at BGP border router, then limit the BGP routes announcement into the internal network.

 router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 neighbor 192.168.0.1 route-map RMAP in

 ip community-list 1 permit 0:80 0:90

 route-map RMAP permit in
 match community 1

Following exmaple filter BGP routes which has communities value 1:1. When there is no match community-list returns deny. To avoid filtering all of routes, we need to define permit any at last.

 router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 neighbor 192.168.0.1 route-map RMAP in

 ip community-list standard FILTER deny 1:1
 ip community-list standard FILTER permit

 route-map RMAP permit 10
 match community FILTER

Communities value keyword internet has special meanings in standard community lists. In below example internet act as match any. It matches all of BGP routes even if the route does not have communities attribute at all. So community list INTERNET is same as above example’s FILTER.

 ip community-list standard INTERNET deny 1:1
 ip community-list standard INTERNET permit internet

Following configuration is an example of communities value deletion. With this configuration communities value 100:1 and 100:2 is removed from BGP updates. For communities value deletion, only permit community-list is used. deny community-list is ignored.

 router bgp 7675
 neighbor 192.168.0.1 remote-as 100
 neighbor 192.168.0.1 route-map RMAP in

 ip community-list standard DEL permit 100:1 100:2

 route-map RMAP permit 10
 set comm-list DEL delete
9.9 BGP Extended Communities Attribute

BGP extended communities attribute is introduced with MPLS VPN/BGP technology. MPLS VPN/BGP expands capability of network infrastructure to provide VPN functionality. At the same time it requires a new framework for policy routing. With BGP Extended Communities Attribute we can use Route Target or Site of Origin for implementing network policy for MPLS VPN/BGP.

BGP Extended Communities Attribute is similar to BGP Communities Attribute. It is an optional transitive attribute. BGP Extended Communities Attribute can carry multiple Extended Community value. Each Extended Community value is eight octet length.

BGP Extended Communities Attribute provides an extended range compared with BGP Communities Attribute. Adding to that there is a type field in each value to provides community space structure.

There are two format to define Extended Community value. One is AS based format the other is IP address based format.

AS:VAL
This is a format to define AS based Extended Community value. AS part is 2 octets Global Administrator subfield in Extended Community value. VAL part is 4 octets Local Administrator subfield. 7675:100 represents AS 7675 policy value 100.

IP-Address:VAL
This is a format to define IP address based Extended Community value. IP-Address part is 4 octets Global Administrator subfield. VAL part is 2 octets Local Administrator subfield. 10.0.0.1:100 represents

9.9.1 BGP Extended Community Lists

Expanded Community Lists is a user defined BGP Expanded Community Lists.

ip extcommunity-list standard name {permit|deny}
This command defines a new standard extcommunity-list. extcommunity is extended communities value. The extcommunity is compiled into extended community structure. We can define multiple extcommunity-list under same name. In that case match will happen user defined order. Once the extcommunity-list matches to extended communities attribute in BGP updates it return permit or deny based upon the extcommunity-list definition. When there is no matched entry, deny will be returned. When extcommunity is empty it matches to any routes.

ip extcommunity-list expanded name {permit|deny} line
This command defines a new expanded extcommunity-list. line is a string expression of extended communities attribute. line can include regular expression to match extended communities attribute in BGP updates.
no ip extcommunity-list name
no ip extcommunity-list standard name
no ip extcommunity-list expanded name

These commands delete extended community lists specified by name. All of extended community lists shares a single name space. So extended community lists can be removed simply specifying the name.

show ip extcommunity-list
show ip extcommunity-list name

This command displays current extcommunity-list information. When name is specified the community list’s information is shown.

 # show ip extcommunity-list

9.9.2 BGP Extended Communities in Route Map

match extcommunity word
set extcommunity rt extcommunity
This command set Route Target value.

set extcommunity soo extcommunity
This command set Site of Origin value.

9.10 Displaying BGP Routes

9.10.1 Show IP BGP

show ip bgp
show ip bgp A.B.C.D
show ip bgp X:X::X:X

This command displays BGP routes. When no route is specified it displays all of IPv4 BGP routes.

BGP table version is 0, local router ID is 10.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 1.1.1.1/32</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>i</td>
<td></td>
</tr>
</tbody>
</table>

Total number of prefixes 1

9.10.2 More Show IP BGP

show ip bgp regexp line

This command display BGP routes using AS path regular expression (see Section 9.7.2 [Display BGP Routes by AS Path], page 48).
show ip bgp community community
show ip bgp community community exact-match
Command
This command displays BGP routes using community (see Section 9.8.4 [Display BGP Routes by Community], page 52).

show ip bgp community-list word
show ip bgp community-list word exact-match
Command
This command displays BGP routes using community list (see Section 9.8.4 [Display BGP Routes by Community], page 52).

show ip bgp summary
show ip bgp neighbor [peer]
clear ip bgp peer
Clear peers which have addresses of X.X.X.X

clear ip bgp peer soft in
Clear peer using soft reconfiguration.

show debug
debugevent
debug update
debug keepalive
nnodebug event
nnodebug update
nnodebug keepalive
Command

9.11 Capability Negotiation

When adding IPv6 routing information exchange feature to BGP. There were some proposals. IETF IDR working group finally take a proposal called Multiprotocol Extension for BGP. The specification is described in RFC2283. The protocol does not define new protocols. It defines new attributes to existing BGP. When it is used exchanging IPv6 routing information it is called BGP-4+. When it is used for exchanging multicast routing information it is called MBGP.

bgpd supports Multiprotocol Extension for BGP. So if remote peer supports the protocol, bgpd can exchange IPv6 and/or multicast routing information.

Traditional BGP does not have the feature to detect remote peer’s capability whether it can handle other than IPv4 unicast routes. This is a big problem using Multiprotocol Extension for BGP to operational network. draft-ietf-idr-bgp4-cap-neg-04.txt is proposing a feature called Capability Negotiation. bgpd use this Capability Negotiation to detect remote peer’s capabilities. If the peer is only configured as IPv4 unicast neighbor, bgpd does not send these Capability Negotiation packets.

By default, Zebra will bring up peering with minimal common capability for the both sides. For example, local router has unicast and multicast capabilities and remote router has unicast capability. In this case, the local router will establish the connection with
unicast only capability. When there are no common capabilities, Zebra sends Unsupported Capability error and then resets the connection.

If you want to completely match capabilities with remote peer. Please use **strict-capability-match** command.

```plaintext
neighbor peer strict-capability-match
no neighbor peer strict-capability-match
```

Strictly compares remote capabilities and local capabilities. If capabilities are different, send Unsupported Capability error then reset connection.

You may want to disable sending Capability Negotiation OPEN message optional parameter to the peer when remote peer does not implement Capability Negotiation. Please use **dont-capability-negotiate** command to disable the feature.

```plaintext
neighbor peer dont-capability-negotiate
no neighbor peer dont-capability-negotiate
```

Suppress sending Capability Negotiation as OPEN message optional parameter to the peer. This command only affects the peer is configured other than IPv4 unicast configuration.

When remote peer does not have capability negotiation feature, remote peer will not send any capabilities at all. In that case, bgp configures the peer with configured capabilities.

You may prefer locally configured capabilities more than the negotiated capabilities even though remote peer sends capabilities. If the peer is configured by **override-capability**, bgpd ignores received capabilities then override negotiated capabilities with configured values.

```plaintext
neighbor peer override-capability
no neighbor peer override-capability
```

Override the result of Capability Negotiation with local configuration. Ignore remote peer’s capability value.

9.12 Route Reflector

```plaintext
bgp cluster-id a.b.c.d
neighbor peer route-reflector-client
no neighbor peer route-reflector-client
```

9.13 Route Server

At an Internet Exchange point, many ISPs are connected to each other by external BGP peering. Normally these external BGP connection are done by **full mesh** method. As with internal BGP full mesh formation, this method has a scaling problem.

This scaling problem is well known. Route Server is a method to resolve the problem. Each ISP’s BGP router only peers to Route Server. Route Server serves as BGP information exchange to other BGP routers. By applying this method, numbers of BGP connections is reduced from $O(n^2(n-1)/2)$ to $O(n)$.
Unlike normal BGP router, Route Server must have several routing tables for managing different routing policies for each BGP speaker. We call the routing tables as different views. bgpd can work as normal BGP router or Route Server or both at the same time.

9.13.1 Multiple instance

To enable multiple view function of bgpd, you must turn on multiple instance feature beforehand.

bgp multiple-instance
Enable BGP multiple instance feature. After this feature is enabled, you can make multiple BGP instances or multiple BGP views.

no bgp multiple-instance
Disable BGP multiple instance feature. You can not disable this feature when BGP multiple instances or views exist.

When you want to make configuration more Cisco like one,

bgp config-type cisco
Cisco compatible BGP configuration output.

When bgp config-type cisco is specified,
“no synchronization” is displayed. “no auto-summary” is displayed.
“network” and “aggregate-address” argument is displayed as “A.B.C.D M.M.M.M”
Zebra: network 10.0.0.0/8 Cisco: network 10.0.0.0
Zebra: aggregate-address 192.168.0.0/24 Cisco: aggregate-address 192.168.0.0
255.255.255.0

Community attribute handling is also different. If there is no configuration is specified community attribute and extended community attribute are sent to neighbor. When user manually disable the feature community attribute is not sent to the neighbor. In case of “bgp config-type cisco” is specified, community attribute is not sent to the neighbor by default. To send community attribute user has to specify “neighbor A.B.C.D send-community” command.

! router bgp 1 neighbor 10.0.0.1 remote-as 1 no neighbor 10.0.0.1 send-community !
! router bgp 1 neighbor 10.0.0.1 remote-as 1 neighbor 10.0.0.1 send-community !

bgp config-type zebra
Zebra style BGP configuration. This is default.

9.13.2 BGP instance and view

BGP instance is a normal BGP process. The result of route selection goes to the kernel routing table. You can setup different AS at the same time when BGP multiple instance feature is enabled.
router bgp as-number
Command
Make a new BGP instance. You can use arbitrary word for the name.

```
bgp multiple-instance
!
router bgp 1
  neighbor 10.0.0.1 remote-as 2
  neighbor 10.0.0.2 remote-as 3
!
router bgp 2
  neighbor 10.0.0.3 remote-as 4
  neighbor 10.0.0.4 remote-as 5
```

BGP view is almost same as normal BGP process. The result of route selection does not go to the kernel routing table. BGP view is only for exchanging BGP routing information.

router bgp as-number view name
Command
Make a new BGP view. You can use arbitrary word for the name. This view’s route selection result does not go to the kernel routing table.

With this command, you can setup Route Server like below.

```
bgp multiple-instance
!
router bgp 1 view 1
  neighbor 10.0.0.1 remote-as 2
  neighbor 10.0.0.2 remote-as 3
!
router bgp 2 view 2
  neighbor 10.0.0.3 remote-as 4
  neighbor 10.0.0.4 remote-as 5
```

9.13.3 Routing policy

You can set different routing policy for a peer. For example, you can set different filter for a peer.

```
bgp multiple-instance
!
router bgp 1 view 1
  neighbor 10.0.0.1 remote-as 2
  neighbor 10.0.0.1 distribute-list 1 in
!
router bgp 1 view 2
  neighbor 10.0.0.1 remote-as 2
  neighbor 10.0.0.1 distribute-list 2 in
```

This means BGP update from a peer 10.0.0.1 goes to both BGP view 1 and view 2. When the update is inserted into view 1, distribute-list 1 is applied. On the other hand, when the update is inserted into view 2, distribute-list 2 is applied.
9.13.4 Viewing the view

To display routing table of BGP view, you must specify view name.

```
show ip bgp view name
```

Display routing table of BGP view name.

9.14 How to set up a 6-Bone connection

zebra configuration

```
! Actually there is no need to configure zebra
!
```

bgpd configuration

```
! This means that routes go through zebra and into the kernel.
!
router zebra
!
! MP-BGP configuration
!
router bgp 7675
  bgp router-id 10.0.0.1
  neighbor 3ffe:1cfa:0:2a0:c9ff:fe9e:f56 remote-as as-number
  address-family ipv6
    network 3ffe:506::/32
    neighbor 3ffe:1cfa:0:2a0:c9ff:fe9e:f56 activate
    neighbor 3ffe:1cfa:0:2a0:c9ff:fe9e:f56 route-map set-nexthop out
    neighbor 3ffe:1cfa:0:2c0:4fff:fe68:a231 remote-as as-number
    neighbor 3ffe:1cfa:0:2c0:4fff:fe68:a231 route-map set-nexthop out
    exit-address-family
    ipv6 access-list all permit any
    ! Set output nexthop address.
    ! route-map set-nexthop permit 10
    match ipv6 address all
    set ipv6 nexthop global 3ffe:1cfa:0:2c0:4fff:fe68:a225
    set ipv6 nexthop local fe80::2c0:4fff:fe68:a225
    !
    ! logfile FILENAME is obsolete. Please use log file FILENAME
    !
    log file bgpd.log
    !
```
9.15 Dump BGP packets and table

`dump bgp all path`
Dump all BGP packet and events to `path` file.

`dump bgp all path interval`
Dump all BGP packet and events to `path` file.

`dump bgp updates path`
Dump BGP updates to `path` file.

`dump bgp updates path interval`
Dump BGP updates to `path` file.

`dump bgp routes path`
Dump whole BGP routing table to `path`. This is heavy process.
10 VTY shell

`vtysh` is integrated shell of Zebra software.

To use vtysh please specify `--enable-vtysh` to configure script. To use PAM for authentication use `--with-libpam` option to configure script.

vtysh only searches `/usr/local/etc` path for `vtysh.conf` which is the vtysh configuration file. Vtysh does not search current directory for configuration file because the file includes user authentication settings.

Currently, `vtysh.conf` has only one command.

```
! username foo nopassword
```

With this set, user foo does not need password authentication for user vtysh. With PAM vtysh uses PAM authentication mechanism.

If vtysh is compiled without PAM authentication, every user can use vtysh without authentication.
11 Filtering

Zebra provides many very flexible filtering features. Filtering is used for both input and output of the routing information. Once filtering is defined, it can be applied in any direction.

11.0.1 IP Access List

```
access-list name permit ipv4-network
access-list name deny ipv4-network
```

Basic filtering is done by `access-list` as shown in the following example.

```
access-list filter deny 10.0.0.0/9
access-list filter permit 10.0.0.0/8
```

11.0.2 IP Prefix List

`ip prefix-list` provides the most powerful prefix based filtering mechanism. In addition to `access-list` functionality, `ip prefix-list` has prefix length range specification and sequential number specification. You can add or delete prefix based filters to arbitrary points of prefix-list using sequential number specification.

If no `ip prefix-list` is specified, it acts as permit. If `ip prefix-list` is defined, and no match is found, default deny is applied.

```
ip prefix-list name (permit|deny) prefix [le len] [ge len]
ip prefix-list name seq number (permit|deny) prefix [le len] [ge len]
```

You can create `ip prefix-list` using above commands.

`seq number` can be set either automatically or manually. In the case that sequential numbers are set manually, the user may pick any number less than 4294967295. In the case that sequential number are set automatically, the sequential number will increase by a unit of five (5) per list. If a list with no specified sequential number is created after a list with a specified sequential number, the list will automatically pick the next multiple of five (5) as the list number. For example, if a list with number 2 already exists and a new list with no specified number is created, the next list will be numbered 5. If lists 2 and 7 already exist and a new list with no specified number is created, the new list will be numbered 10.

`le` command specifies prefix length. The prefix list will be applied if the prefix length is less than or equal to the `le` prefix length.

`ge` command specifies prefix length. The prefix list will be applied if the prefix length is greater than or equal to the `ge` prefix length.

Less than or equal to prefix numbers and greater than or equal to prefix numbers can be used together. The order of the `le` and `ge` commands does not matter.
If a prefix list with a different sequential number but with the exact same rules as a previous list is created, an error will result. However, in the case that the sequential number and the rules are exactly similar, no error will result.

If a list with the same sequential number as a previous list is created, the new list will overwrite the old list.

Matching of IP Prefix is performed from the smaller sequential number to the larger. The matching will stop once any rule has been applied.

In the case of no le or ge command,

Version 0.85: the matching rule will apply to all prefix lengths that matched the prefix list.

Version 0.86 or later: In the case of no le or ge command, the prefix length must match exactly the length specified in the prefix list.

no ip prefix-list name

11.0.2.1 ip prefix-list description

ip prefix-list name description desc

Descriptions may be added to prefix lists. This command adds a description to the prefix list.

no ip prefix-list name description [desc]

Deletes the description from a prefix list. It is possible to use the command without the full description.

11.0.2.2 ip prefix-list sequential number control

ip prefix-list sequence-number

With this command, the IP prefix list sequential number is displayed. This is the default behavior.

no ip prefix-list sequence-number

With this command, the IP prefix list sequential number is not displayed.

11.0.2.3 Showing ip prefix-list

show ip prefix-list

Display all IP prefix lists.

show ip prefix-list name

Show IP prefix list can be used with a prefix list name.

show ip prefix-list name seq num

Show IP prefix list can be used with a prefix list name and sequential number.
Chapter 11: Filtering

Command

`show ip prefix-list name a.b.c.d/m`
If the command longer is used, all prefix lists with prefix lengths equal to or longer than the specified length will be displayed. If the command first match is used, the first prefix length match will be displayed.

Command

`show ip prefix-list name a.b.c.d/m longer`
`show ip prefix-list name a.b.c.d/m first-match`
`show ip prefix-list summary`
`show ip prefix-list summary name`
`show ip prefix-list detail`
`show ip prefix-list detail name`

11.0.2.4 Clear counter of ip prefix-list

Command

`clear ip prefix-list`
Clears the counters of all IP prefix lists. Clear IP Prefix List can be used with a specified name and prefix.

Command

`clear ip prefix-list name`
`clear ip prefix-list name a.b.c.d/m`
12 Route Map

Route map is a very useful function in zebra. There is a match and set statement permitted in a route map.

```plaintext
route-map test permit 10
   match ip address 10
   set local-preference 200
```

This means that if a route matches ip access-list number 10 its local-preference value is set to 200.

12.0.1 Route Map Command

```plaintext
route-map route-map-name permit priority
```

12.0.2 Route Map Match Command

```plaintext
match ip address access_list
   Matches the specified access_list

match ip next-hop ipv4_addr
   Matches the specified ipv4_addr.

match aspath as_path
   Matches the specified as_path.

match metric metric
   Matches the specified metric.

match community community_list
   Matches the specified community_list
```

12.0.3 Route Map Set Command

```plaintext
set ip next-hop ipv4_address
   Set the BGP nexthop address.

set local-preference local_pref
   Set the BGP local preference.

set weight weight
   Set the route’s weight.

set metric metric
   Set the BGP attribute MED.

set as-path prepend as_path
   Set the BGP AS path to prepend.
```
set community <i>community</i>
Set the BGP community attribute.

set ipv6 next-hop global <i>ipv6_address</i>
Set the BGP-4+ global IPv6 nexthop address.

set ipv6 next-hop local <i>ipv6_address</i>
Set the BGP-4+ link local IPv6 nexthop address.
Zebra fully supports IPv6 routing. As described so far, Zebra supports RIPng, OSPFv3 and BGP-4*. You can give IPv6 addresses to an interface and configure static IPv6 routing information. Zebra-IPv6 also provides automatic address configuration via a feature called address auto configuration. To do it, the router must send router advertisement messages to the all nodes that exist on the network.

13.1 Router Advertisement

```bash
ipv6 nd send-ra
ipv6 nd prefix-advertisement ipv6prefix
interface eth0
  ipv6 nd send-ra
  ipv6 nd prefix-advertisement 3ffe:506:5009::/64
```
Chapter 14: Kernel Interface

There are several different methods for reading kernel routing table information, updating kernel routing tables, and for looking up interfaces.

`ioctl`
The `ioctl` method is a very traditional way for reading or writing kernel information. `ioctl` can be used for looking up interfaces and for modifying interface addresses, flags, mtu settings and other types of information. Also, `ioctl` can insert and delete kernel routing table entries. It will soon be available on almost any platform which zebra supports, but it is a little bit ugly thus far, so if a better method is supported by the kernel, zebra will use that.

`sysctl`
`sysctl` can lookup kernel information using MIB (Management Information Base) syntax. Normally, it only provides a way of getting information from the kernel. So one would usually want to change kernel information using another method such as `ioctl`.

`proc filesystem`
`proc filesystem` provides an easy way of getting kernel information.

`routing socket`
`netlink`
On recent Linux kernels (2.0.x and 2.2.x), there is a kernel/user communication support called netlink. It makes asynchronous communication between kernel and Zebra possible, similar to a routing socket on BSD systems.

Before you use this feature, be sure to select (in kernel configuration) the kernel/netlink support option 'Kernel/User network link driver' and 'Routing messages'.

Today, the /dev/route special device file is obsolete. Netlink communication is done by reading/writing over netlink socket.

After the kernel configuration, please reconfigure and rebuild Zebra. You can use netlink as a dynamic routing update channel between Zebra and the kernel.
15 SNMP Support

SNMP (Simple Network Managing Protocol) is widely implemented feature for collecting network information from router and/or host. Zebra itself does not support SNMP agent functionality. But conjunction with SNMP agent, Zebra provides routing protocol MIBs.

Zebra uses SMUX protocol (RFC1227) for making communication with SNMP agent. There are several SNMP agent which support SMUX. We recommend to use the latest ucd-snmp software.

15.1 How to get ucd-snmp

ucd-snmp is a free software which distributed so called "as is" software license. Please check the license which comes with distribution of ucd-snmp. The authors of ucd-snmp are the University of California, the University of California at Davis, and the Electrical Engineering department at the University of California at Davis.

You can get ucd-snmp from ftp://ucd-snmp.ucdavis.edu/. As of this writing we are testing with ucd-snmp-4.1.pre1.tar.gz.

To enable SMUX protocol support, please configure ucd-snmp like below.

```bash
% configure --with-mib-modules=smux
```

After compile and install ucd-snmp, you will need to configure smuxpeer. I'm now using configuration shown below. This means SMUX client connects to MIB 1.3.6.1.6.3.1 with password test.

```
/usr/local/share/snmp/snmpd.conf
================================
smuxpeer 1.3.6.1.6.3.1 test
```

15.2 SMUX configuration

To enable SNMP support of Zebra, you have to configure Zebra with --enable-snmp (see Section 2.1 [Configure the Software], page 7).

```bash
smux peer oid
no smux peer oid
smux peer oid password
no smux peer oid password
smux peer .1.3.6.1.6.3.1 test
```


Appendix A Zebra Protocol

Zebra Protocol is a protocol which is used between protocol daemon and zebra. Each protocol daemon sends selected routes to zebra daemon. Then zebra manages which route is installed into the forwarding table.

Zebra Protocol is a TCP-based protocol. Below is common header of Zebra Protocol.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length (2) | Command (1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length is total packet length including this header length. So minimum length is three. Command is Zebra Protocol command.

```
ZEBRA_INTERFACE_ADD 1
ZEBRA_INTERFACE_DELETE 2
ZEBRA_INTERFACE_ADDRESS_ADD 3
ZEBRA_INTERFACE_ADDRESS_DELETE 4
ZEBRA_INTERFACE_UP 5
ZEBRA_INTERFACE_DOWN 6
ZEBRA_IPV4_ROUTE_ADD 7
ZEBRA_IPV4_ROUTE_DELETE 8
ZEBRA_IPV6_ROUTE_ADD 9
ZEBRA_IPV6_ROUTE_DELETE 10
ZEBRA_IPV6_ROUTE_DELETE 11
ZEBRA_REDISTRIBUTE_ADD 12
ZEBRA_REDISTRIBUTE_DELETE 13
ZEBRA_REDISTRIBUTE_DEFAULT_ADD 14
ZEBRA_IPV4_NEXTHOP_LOOKUP 15
ZEBRA_IPV6_NEXTHOP_LOOKUP 16
```

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
Appendix B Packet Binary Dump Format

Zebra can dump routing protocol packet into file with a binary format (see Section 9.15 [Dump BGP packets and table], page 62).

It seems to be better that we share the MRT’s header format for backward compatibility with MRT’s dump logs. We should also define the binary format excluding the header, because we must support both IP v4 and v6 addresses as socket addresses and / or routing entries.

In the last meeting, we discussed to have a version field in the header. But Masaki told us that we can define new ‘type’ value rather than having a ‘version’ field, and it seems to be better because we don’t need to change header format.

Here is the common header format. This is same as that of MRT.

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Length</td>
</tr>
</tbody>
</table>

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_STATE_CHANGE, and Address Family == IP (version 4)

<table>
<thead>
<tr>
<th>Source AS number</th>
<th>Destination AS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Index</td>
<td>Address Family</td>
</tr>
<tr>
<td>Source IP address</td>
<td></td>
</tr>
<tr>
<td>Destination IP address</td>
<td></td>
</tr>
<tr>
<td>Old State</td>
<td>New State</td>
</tr>
</tbody>
</table>

Where State is the value defined in RFC1771.

If ‘type’ is PROTOCOL_BGP4MP, ‘subtype’ is BGP4MP_STATE_CHANGE, and Address Family == IP version 6
If 'type' is PROTOCOL_BGP4MP, 'subtype' is BGP4MP_MESSAGE, and Address Family == IP (version 4)

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source AS number</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Interface Index</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address (Cont’d)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Old State</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>

Where BGP Message Packet is the whole contents of the BGP4 message including header portion.

If 'type' is PROTOCOL_BGP4MP, 'subtype' is BGP4MP_MESSAGE, and Address Family == IP version 6

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source AS number</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Interface Index</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Source IP address</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Destination IP address</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>BGP Message Packet</td>
</tr>
<tr>
<td>---</td>
</tr>
</tbody>
</table>
If 'type' is PROTOCOL_BGP4MP, 'subtype' is BGP4MP_ENTRY, and Address Family == IP (version 4)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| +---+
| | Source AS number | Destination AS number |
| +---+
| | Interface Index | Address Family |
| +---+
| | Source IP address |
| +---+
| | Source IP address (Cont'd) |
| +---+
| | Source IP address (Cont'd) |
| +---+
| | Source IP address (Cont'd) |
| +---+
| | Source IP address (Cont'd) |
| +---+
| | Destination IP address |
| +---+
| | Destination IP address (Cont'd) |
| +---+
| | Destination IP address (Cont'd) |
| +---+
| | Destination IP address (Cont'd) |
| +---+
| | Destination IP address (Cont'd) |
| +---+
| | BGP Message Packet |
| +---+

If 'type' is PROTOCOL_BGP4MP, 'subtype' is BGP4MP_ENTRY, and Address Family == IP (version 6)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| +---+
| | View # | Status |
| +---+
| | Time Last Change |
| +---+
| | Address Family | SAFI | Next-Hop-Len |
| +---+
| | Next Hop Address |
| +---+
| | Prefix Length | Address Prefix [variable] |
| +---+
| | Attribute Length |
| +---+
| | BGP Attribute [variable length] |
| +---+
<table>
<thead>
<tr>
<th>View #</th>
<th>Status</th>
<th>Time Last Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Family</td>
<td>SAFI</td>
<td>Next-Hop-Len</td>
</tr>
<tr>
<td>Next Hop Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Hop Address (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Hop Address (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Next Hop Address (Cont’d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prefix Length</td>
<td>Address Prefix [variable]</td>
<td></td>
</tr>
<tr>
<td>Address Prefix (cont’d) [variable]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGP Attribute [variable length]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BGP4 Attribute must not contain MP_UNREACH_NLRI. If BGP Attribute has MP_REACH_NLRI field, it must have zero length NLRI, e.g., MP_REACH_NLRI has only Address Family, SAFI and next-hop values.

If ‘type’ is PROTOCOL_BGP4MP and ‘subtype’ is BGP4MP_SNAPSHOT,

The file specified in "File Name" contains all routing entries, which are in the format of "subtype == BGP4MP_ENTRY".

Constants:
```c
/* type value */
#define MSG_PROTOCOL_BGP4MP 16
/* subtype value */
#define BGP4MP_STATE_CHANGE 0
#define BGP4MP_MESSAGE 1
#define BGP4MP_ENTRY 2
#define BGP4MP_SNAPSHOT 3
```
Command Index

A

access-class access-list 12
access-list name deny ipv4-network 65
access-list name permit ipv4-network 65
aggregate-address A.B.C.D/M 44
aggregate-address A.B.C.D/M as-set 44
aggregate-address A.B.C.D/M summary-only 44
area 0-4294967295> authentication 35
area 0-4294967295> export-list NAME 35
area 0-4294967295> import-list NAME 35
area 0-4294967295> range a.b.c.d/m 35
area 0-4294967295> shortcut 35
area 0-4294967295> stub 35
area 0-4294967295> stub no-summary 35
area a.b.c.d authentication 35
a.b.c.d authentication message-digest 35
area a.b.c.d default-cost <0-16777214> 35
area a.b.c.d export-list NAME 35
area a.b.c.d import-list NAME 35
area a.b.c.d range a.b.c.d/m 35
area a.b.c.d range IPV4_PREFIX substitute ...
 IPV4_PREFIX 35
area a.b.c.d range IPV4_PREFIX suppress 35
area a.b.c.d shortcut 35
area a.b.c.d stub 35
area a.b.c.d stub no-summary 35
area a.b.c.d virtual-link a.b.c.d 35
auto-cost reference-bandwidth <1-4294967> 33

B

bandwidth <1-10000000> 17
banner motd default 12
bgp cluster-id a.b.c.d 58
bgp config-type cisco 59
bgp config-type zebra 59
bgp multiple-instance 59
bgp router-id A.B.C.D 43

C

clear ip bgp peer 57
clear ip bgp peer soft in 57
clear ip prefix-list 67
clear ip prefix-list name 67
clear ip prefix-list name a.b.c.d/m 67
configure terminal 12

distribute-list access_list (in|out) ifname .. 31
distribute-list access_list direct ifname 24
distribute-list NAME out
 (kernel|connected|static|rip|ospf) 38
no debug event .. 57
no debug keepalive 57
no debug ospf is 40
no debug ospf isa 40
no debug ospf is (status|events|timers) 40
no debug ospf isa (generate|flooding|refresh) 40
no debug ospf ism 40
no debug ospf ism (status|events|timers) 40
no debug ospf packet (hello|dd|ls-request|ls-update|ls-ack|all) (send|recv) [detail] 40
no debug ospf zebra 40
no debug ospf zebra (interface|redistribute) 40
no debug update 57
no default-information originate 38
no default-metric 38
no default-metric <1-16> 25
no default-metric <1-255> 25, 38
no distance <1-255> A.B.C.D/M 25
no distance <1-255> A.B.C.D/M access-list 26
no distance ospf 38
distribute-list NAME out 38
 default-originate 57
distribute-list access-list WORD (permit|deny) [sequence] 48
distribute-listWORD (permit|deny) [sequence] 48
distribute-list WORD (permit|deny) [sequence] 48
exec-timeout ... 12
ip as-path access-list WORD 48
ip as-path access-list WORD (permit|deny) line 48
ip as-path access-list WORD (permit|deny) line 48
ip community-list expanded name 51
ip community-list name 51
ip community-list standard name 51
ip extcommunity-list expanded name 56
ip extcommunity-list name 56
ip extcommunity-list standard name 56
ip ospf authentication-key 36
ip ospf cost .. 36
ip ospf dead-interval 36
ip ospf hello-interval 36
ip ospf message-digest-key 36
ip ospf network 36
ip ospf priority 36
ip ospf redistribute 36
ip ospf transmit-delay 37
ip prefix-list NAME 66
ip prefix-list NAME description [desc] 66
ip prefix-list sequence-number 66
no ip rip authentication mode md5 27
no ip rip authentication mode text 27
no ip rip authentication string string 27
no ip split-horizon 23
no log stdout .. 11
no log syslog ... 11
no multicast .. 17
no neighbor A.B.C.D 22
no neighbor peer default originate 46
no neighbor peer description 45
no neighbor peer dont-capability-negotiate .. 58
no neighbor peer ebgp-multihop 45
no neighbor peer interface ifname 46
no neighbor peer maximum-prefix number 46
no neighbor peer next-hop-self 46
no neighbor peer override-capability 58
no neighbor peer route-reflector-client 58
no neighbor peer shutdown 45
no neighbor peer strict-capability-match 58
no neighbor peer update-source 46
no neighbor peer weight weight 46
no network A.B.C.D/M 44
no network a.b.c.d/m area <0-4294967295> 33
no network a.b.c.d/m area a.b.c.d 33
no network ifname 22
no network network 22
no ospf abr-type type 33
no ospf rfcl683compatibility 33
no ospf router-id 33
no passive interface interface 33
no passive-interface IFNAME 23
no redistribute (kernel|connected|static|rip|bgp) 38
no redistribute bgp .. 24
no redistribute connected 24
no redistribute kernel 23
no redistribute ospf 24
no redistribute static 24
no router rip 22
no route a.b.c.d/m 24
no router bgp as/n 43
no router ospf 33
no router zebra 38
no shutdown 17
no smux peer oid 75
no smux peer oid password 75
no timers basic 28
no timers spf 33

O

offset-list access-list (in|out) 25
offset-list access-list (in|out) ifname 25
ospf abr-type type 33
ospf rfcl683compatibility 33
ospf router-id a.b.c.d 33

P

passive interface interface 33
passive-interface IFNAME 23
password password 11

R

redistribute (kernel|connected|static|rip|bgp) 38
redistribute (kernel|connected|static|rip|bgp) metric <0-16777214> 38
redistribute (kernel|connected|static|rip|bgp) route-map word 38
redistribute (kernel|connected|static|rip|bgp) 38
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) 38
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) metric <0-16777214> 38
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) metric <0-16777214> route-map word 38
redistribute (kernel|connected|static|rip|bgp) metric-type (1|2) route-map word 38
redistribute (kernel|connected|static|rip|bgp) route-map 38
redistribute bgp 24
redistribute bgp metric <0-16> 24
redistribute bgp route-map route-map 24
redistribute connected 24, 41, 45
redistribute connected metric <0-16> 24
redistribute connected route-map route-map 24
redistribute kernel 23, 45
redistribute kernel metric <0-16> 23
redistribute kernel route-map route-map 23
redistribute ospf 24, 45
redistribute ospf metric <0-16> 24
redistribute ospf route-map route-map 24
redistribute rip 45
redistribute ripng 41
redistribute static 24, 41, 45
redistribute static metric <0-16> 24
redistribute static route-map route-map 24
refresh age-diff <0-10000> 33
refresh group-limit <0-10000> 33
refresh per-slice <0-10000> 33
route a.b.c.d/m 24
route network 31
route-map route-map-name permit priority 69
router bgp as-number 60
router bgp as-number view name 60
router bgp as/n 43
router ospf 33
router ospf6 41
router rip 22
router ripng 31
router-id a.b.c.d 41

S
service advanced-vty 12
service password-encryption 12
service terminal-length <0-512> 12
set as-path prepend as-path 49
set as-path prepend as_path 69
set comm-list word delete 52
set community community 52, 70
set community community additive 52
set community none 52
set extcommunity rt extcommunity 56
set extcommunity soo extcommunity 56
set ip next-hop A.B.C.D 26
set ip next-hop ipv4_address 69
set ip next-hop global ipv6_address 70
set ip next-hop local ipv6_address 70
set local-preference local_pref 69
set metric <0-4294967295> 27
set metric metric 69
set weight weight 69
show debug .. 57
show debugging ospf 40
show debugging rip 29
show debugging ripng 31
show interface 19
show ip bgp ... 56
show ip bgp A.B.C.D 56
show ip bgp community 53
show ip bgp community community 53, 57
show ip bgp community exact-match 53, 57
show ip bgp community-list word 53, 57
show ip bgp community-list word exact-match 53, 57
show ip bgp neighbor [peer] 57
show ip bgp regexp line 48, 56
show ip bgp summary 57
show ip bgp view name 61
show ip bgp X:X::X:X 56
show ip community-list 51
show ip community-list name 51
show ip extcommunity-list 56
show ip extcommunity-list name 56
show ip ospf ... 39
show ip ospf database (asbr-summary|external|network|router|summary) link-state-id adv-router adv-router 39
show ip ospf database (asbr-summary|external|network|router|summary) link-state-id self-originate 39
show ip ospf database (asbr-summary|external|network|router|summary) self-originate 39
show ip ospf database max-age 39
show ip ospf database self-originate 39
show ip ospf interface [INTERFACE] 39
show ip ospf neighbor 39
show ip ospf neighbor INTERFACE 39
show ip ospf neighbor INTERFACE detail 39
show ip ospf refresh 29
show ip ospf route 39
show ip prefix-list 66
show ip prefix-list detail 67
show ip prefix-list detail name 67
show ip prefix-list name 66
show ip prefix-list name a.b.c.d/m 67
show ip prefix-list name a.b.c.d/m first-match ... 67
show ip prefix-list name a.b.c.d/m longer 67
show ip prefix-list name seq num 66
show ip prefix-list summary 67
show ip prefix-list summary name 67
show ip protocols 28
show ip rip .. 28
show ip ripng .. 31
show ip route .. 19
show ipv6 ospf6 [INSTANCE_ID] 42
show ipv6 ospf6 database 42
show ipv6 ospf6 interface 42
show ipv6 ospf6 neighbor 42
show ipv6 ospf6 request-list A.B.C.D 42
show ipv6 route 19
show ipv6 route ospf6 42
show ipv6forward 19
show version ... 12
shutdown ... 17
smux peer oid ... 75
smux peer oid password 75

T
table tableno .. 18
terminal length <0-512> 12
timers basic update timeout garbage 27
timers spf <0-4294967295> <0-4294967295> 33

V
version version 23

W
who .. 12
write file ... 12
write terminal 12
VTY Key Index

? .. 16

C
 c-a 15
 c-b 15
 c-c 16
 c-d 15
 c-e 15
 c-f 15
 c-h 15
 c-k 15
 c-n 16
 c-p 16
 c-t 15
 c-u 15
 c-w 15
 c-z 16

D
 DEL .. 15

L
 LEFT 15

M
 M-b 15
 M-d 15
 M-f 15

R
 RIGHT 15

T
 TAB .. 16

U
 UP .. 16
Short Contents

1 Overview ... 1
2 Installation .. 7
3 Basic commands ... 11
4 Zebra ... 17
5 RIP ... 21
6 RIPng .. 31
7 OSPFv2 .. 33
8 OSPFv3 .. 41
9 BGP ... 43
10 VTY shell .. 63
11 Filtering ... 65
12 Route Map ... 69
13 IPv6 Support .. 71
14 Kernel Interface .. 73
15 SNMP Support ... 75
A Zebra Protocol .. 77
B Packet Binary Dump Format 79
Command Index .. 83
VTY Key Index ... 89
Table of Contents

1 Overview ... 1
 1.1 About Zebra ... 1
 1.2 System Architecture 2
 1.3 Supported Platforms 3
 1.4 Supported RFC 3
 1.5 How to get Zebra 4
 1.6 Mailing List 4
 1.7 Bug Reports 5

2 Installation .. 7
 2.1 Configure the Software 7
 2.2 Build the Software 8
 2.3 Install the Software 9

3 Basic commands 11
 3.1 Config Commands 11
 3.1.1 Basic Config Commands 11
 3.1.2 Sample Config File 13
 3.2 Common Invocation Options 13
 3.3 Virtual Terminal Interfaces 14
 3.3.1 VTY Overview 14
 3.3.2 VTY Modes 14
 3.3.2.1 VTY View Mode 15
 3.3.2.2 VTY Enable Mode 15
 3.3.2.3 VTY Other Modes 15
 3.3.3 VTY CLI Commands 15
 3.3.3.1 CLI Movement Commands 15
 3.3.3.2 CLI Editing Commands 15
 3.3.3.3 CLI Advanced Commands 16

4 Zebra ... 17
 4.1 Invoking zebra 17
 4.2 Interface Commands 17
 4.3 Static Route Commands 18
 4.4 zebra Terminal Mode Commands 19
5 RIP ... 21
 5.1 Starting and Stopping ripd 21
 5.1.1 RIP netmask 21
 5.2 RIP Configuration 22
 5.3 How to Announce RIP route 23
 5.4 Filtering RIP Routes 24
 5.5 RIP Metric Manipulation 25
 5.6 RIP distance .. 25
 5.7 RIP route-map 26
 5.8 RIP Authentication 27
 5.9 RIP Timers .. 27
 5.10 Show RIP Information 28
 5.11 RIP Debug Commands 28

6 RIPng .. 31
 6.1 Invoking ripngd 31
 6.2 ripngd Configuration 31
 6.3 ripngd Terminal Mode Commands 31
 6.4 ripngd Filtering Commands 31

7 OSPFv2 .. 33
 7.1 Configuring ospfd 33
 7.2 OSPF router ... 33
 7.3 OSPF area .. 35
 7.4 OSPF interface 36
 7.5 Redistribute routes to OSPF 38
 7.6 Showing OSPF information 39
 7.7 Debugging OSPF 40

8 OSPFv3 .. 41
 8.1 OSPF6 router ... 41
 8.2 OSPF6 area .. 41
 8.3 OSPF6 interface 41
 8.4 Redistribute routes to OSPF6 41
 8.5 Showing OSPF6 information 42
BGP

- **Starting BGP**
- **BGP router**
 - **BGP distance**
 - **BGP decision process**
- **BGP network**
 - **BGP route**
 - **Route Aggregation**
 - **Redistribute to BGP**
- **BGP Peer**
 - **Defining Peer**
 - **BGP Peer commands**
 - **Peer filtering**
- **BGP Peer Group**
- **BGP Address Family**
- **Autonomous System**
 - **AS Path Regular Expression**
 - **Display BGP Routes by AS Path**
 - **AS Path Access List**
 - **Using AS Path in Route Map**
 - **Private AS Numbers**
- **BGP Communities Attribute**
 - **BGP Community Lists**
 - **Numbered BGP Community Lists**
 - **BGP Community in Route Map**
 - **Display BGP Routes by Community**
 - **Using BGP Communities Attribute**
- **BGP Extended Communities Attribute**
 - **BGP Extended Community Lists**
 - **BGP Extended Communities in Route Map**
- **Displaying BGP Routes**
 - **Show IP BGP**
 - **More Show IP BGP**
- **Capability Negotiation**
- **Route Reflector**
- **Route Server**
 - **Multiple instance**
 - **BGP instance and view**
 - **Routing policy**
 - **Viewing the view**
- **How to set up a 6-Bone connection**
- **Dump BGP packets and table**

VTY shell

- **VTY shell**
11 Filtering .. 65
 11.0.1 IP Access List 65
 11.0.2 IP Prefix List 65
 11.0.2.1 ip prefix-list description 66
 11.0.2.2 ip prefix-list sequential number control
 .. 66
 11.0.2.3 Showing ip prefix-list 66
 11.0.2.4 Clear counter of ip prefix-list 67

12 Route Map .. 69
 12.0.1 Route Map Command 69
 12.0.2 Route Map Match Command 69
 12.0.3 Route Map Set Command 69

13 IPv6 Support .. 71
 13.1 Router Advertisement 71

14 Kernel Interface 73

15 SNMP Support ... 75
 15.1 How to get ucd-snmp 75
 15.2 SMUX configuration 75

Appendix A Zebra Protocol 77

Appendix B Packet Binary Dump Format 79

Command Index 83

VTY Key Index 89