
Simulation Coercion Applied to Multiagent

DDDAS

Yannick Loitière, David Brogan, and Paul Reynolds

Computer Science Department
University of Virginia, Charlottesville, VA 22901, USA

{ycl2r|dbrogan|pfr}@virginia.edu

Abstract. The unpredictable run-time configurations of dynamic, data-
driven application systems require flexible simulation components that
can adapt to changes in the number of interacting components, the syn-
tactic definition of their interfaces, and their role in the semantic defi-
nition of the entire system. Simulation coercion provides one solution to
this problem through a human-controlled mix of semi-automated anal-
ysis and optimization that transforms a simulation to meet a new set
of requirements posed by dynamic data streams. This paper presents an
example of one such coercion tool that uses off-line experimentation and
similarity-based lookup functions to transform a simulation to a reusable
abstract form that extends a static feedback control algorithm to a dy-
namic, data-driven version that capitalizes on extended run-time data to
improve performance.

1 Introduction

Dynamic, data-driven application systems (DDDAS) emphasize the run-time
flexibility of data/control systems dynamically composed from complex combi-
nations of sensors, networks, computational resources, simulation software, and
human-in-the-loop interaction. Dynamic composition of DDDAS changes the
number of interacting components, the syntactic definition of their interfaces,
and their role in the semantic description of the entire system. These unpre-
dictable run-time reconfigurations pose significant challenges to the straightfor-
ward reuse of complex scientific simulations for DDDAS.

For simulation designers and developers, anticipation of and provision for all
possible contexts and uses of a simulation is generally unattainable. Except un-
der very constrained circumstances, reusing simulations without design or code
modification has proven elusive. For example, a simulation may be unable to
perform its desired role in a DDDAS due to decisions made as early as when
an underlying scientific model was selected for its design or as late as when
run-time bindings to memory structures capped the maximum amount of data
permissible. Despite the challenges of building reusable simulations, additional
research is justified by the many forms of benefits: employing a program in an al-
ternative context, composing a program with others to create a new system with
greater objectives, combining a program with another to broaden the levels of

abstraction represented, and modifying a DDDAS to exhibit such properties as
better performance or robustness. We are developing an approach to simulation
transformation, COERCE, that tackles the immediate challenges of making sim-
ulations work more effectively in existing dynamic, data-driven applications and
pursues the long-term challenges of specifying how today’s simulations should
be designed such that they can easily adapt to the unpredictable needs of to-
morrow’s DDDAS.

COERCE has the potential to increase the flexibility of simulation com-
ponents comprising DDDAS. COERCE consists of two elements: coercion and
coercibility. Coercion represents a process of transforming a simulation, using
a human-controlled mix of semi-automated analysis and optimization, to meet
a different set of requirements than those for which the simulation was origi-
nally designed. Through coercion, preexisting (legacy) simulations can be trans-
formed to adapt to new or missing data sources, to change fidelity, and to change
their roles in the larger data-driven system. Coercibility is a simulation property
whereby designer knowledge is documented within the simulation to support
future coercion. In ongoing research related to that presented here, coercibility
techniques are being used to define necessary simulation metadata, including
mechanisms for capturing and representing this data, so that coercion can more
easily perform automated analysis and simulation transformation.

Simulation coercion and coercibility are ambitious goals that will immensely
benefit the DDDAS enabling technology requirements. Not only is there great
breadth in the contributing fields within computer science (software engineer-
ing, programming languages, computational science, etc.), but contributions
to these goals will come from mathematics (optimization, sensitivity analysis,
modeling) as well as from science and engineering. This paper explores one
technique of many that must be studied in the context of simulation coercion:
simulation transformation through off-line experimentation and similarity-based
lookup functions. A simulation of robotic soccer serves as a complex, low-level
simulation that must be transformed to interact with a high-level strategic plan-
ning algorithm. The transformation process we develop for this problem is data
driven and is intended to be applicable to many similar transformations that
arise at run time in dynamic applications.

2 Background

In its current form, the process of transforming a simulation to adapt to dynamic
run-time data streams is primarily a manual process due to the complex logical
interactions and engineering constraints that dictate a simulation’s form and
function. Research in the simulation reuse community demonstrates that code
standardization, functional abstraction, and procedural documentation are tools
that facilitate the reuse process. These techniques share a common belief that
human creativity and insight are among the scarcest resources, but they differ
in how and where they bring human skills to bear on critical issues. A growing
number of research projects are demonstrating how human-guided, data-centric

abstraction processes can re-represent simulation performance to suit new run-
time needs.

Davis and Bigelow [2] argue that an abstraction mechanism called motivated
metamodels can support simulation transformation. The code that defines a sim-
ulation is abstracted to numerical and functional models that generate the same
simulation output. Consider, for example, how the stochastic models of queuing
theory can replicate the automobile flow rates of a high-resolution traffic simula-
tion. Not only is the queuing model a simplified form of the original simulation, it
also provides an intuitive way to be reused for scenarios where the mean automo-
bile arrival rate is varied (perhaps a capability not easily generated through the
modification of the multiagent simulation directly). No general-purpose process
exists to create motivated metamodels, but the authors outline the opportunities
and risks of their use.

Grzeszczuk et al. [4] introduce a specific example of simulation abstraction
with their Neuroanimator. Their technique demonstrates that a computationally
intensive rigid body simulator can be substituted with a trained neural network.
This technique requires repeated execution of a simulation under different initial
conditions in order to accumulate the database of performance data required
for training, but this offline investment is recouped with improved run-time
performance. Although no trace of the scientific logic behind rigid body dynamics
remains, the neural network representation executes more quickly and, because
it is analytically differentiable, it enables the use of gradient descent search in
run-time optimal controllers.

Additional exploration of simulation transformation has been conducted by
those studying simulation coercion. Through code modification, Drewry et al. [3]
demonstrate a semi-automated process that uses user-guided numerical opti-
mization to retune simulation performance to operate in conditions different
from those for which it was originally designed. Waziruddin et al. [6] further for-
malize simulation coercion as a formal process by constructing a formal language
describing its execution and reasoning about provable outcomes in dynamic sce-
narios. Carnahan et al. [1] contribute to the specification of the coercion process
by outlining the roles of simulationists and subject-matter experts and by pro-
ducing a suite of software tools to support their collaborations. The systems
produced through these research efforts are suited to run-time transformation,
but currently lack a unifying theory of system transformation that serves the
broad community of simulation and designers in DDDAS.

3 Simulation Transformation

This paper studies a transformation strategy for addressing misalignments be-
tween data sources. For example, suppose a DDDAS user desires to compose two
simulations such that the output of one becomes the input of another. Figure 1
depicts the data relationship between the two simulations. In particular, note
that the exact data required in the input vector i2 must be contained within the
output vector o1 in order for the computational sequence to complete in a seman-

sim2i2 o2sim1i1 o1

sim’2o1 o’2

f(o1) = i2

Fig. 1. In the top row, the output from simulation1 aligns with the input to sim2 to
support simulation composition. If no mapping from o1 to i2 exists, sim2 is mapped
to a new version, sim′

2 that accepts o1 as input and generates output, o′2.

tically meaningful way. If the exact data required for i2 are not in o1, a mapping
function could be created to synthesize the required data from o1: f(o1) = i2.
With the assistance of a domain expert, such mapping functions may be feasible
solutions. If the data in o1 represents sensor data in the form of units/second
and the data in i2 requires units/minute, a mapping function could simply scale
the output data by 60 to create the appropriate input data. Frequently, however,
the mismatch between a simulation’s input and the available data sources will
be more significant.

To integrate two simulations with irreconcilable misalignments between their
input and output data, we perform more substantial mappings. Figure 1 depicts
a scenario where two simulations must work in a series such that the input to
the two-simulation sequence, i1 cannot be changed and the output from the
sequence, o2, is fixed as well. Because no effective mapping function from o1 to
i2 exists, we instead consider mapping sim2 to a new version, sim′

2 such that
the input to sim′

2 is o1 and the output, o′2, matches the requirements met by o2.
The method we use to accomplish this simulation transformation is data driven.

Our data-driven simulation transformation technique exercises sim2 in its
native environment in order to record its behavior for future abstraction. sim2

is executed with many input instances of the form i2. The specific instances
of i2 used during this exploration stage are guided by a user or the run-time
execution to reflect conditions the DDDAS will subsequently encounter. Because
the accuracy of sim′

2 depends on the data generated during this exploration, the
sampling of the space represented by i2 is very important. If the simulation is
well behaved in some areas of state space and chaotic or nonlinear in others,
the data sampling must capture these behaviors and not the potentially infinite
variety of less-interesting ones.

The exploration stage produces a database consisting of mappings from i2 to
o2. These are point samples of the true functional relationship, sim2(i2) = o2, en-
coded by the second simulation. Because the goal of this transformation process
is to produce an alternative functional relationship, sim′

2(o1) = o2, we must cre-
ate sim′

2. As an initial step, the data representing i2 in the database is mapped
into a format, i′2, that matches the requirements of output data, o1. This map-
ping algorithm is typically easier to describe than its inverse. The transformed
i′2 input data is compatible with the o1 output data from sim1 and we thus have

a database of point samples that demonstrate the mapping sim2 applies to an
input derived from o1. To be most useful, sim′

2 must be more than a database
lookup function and must be converted to a tuned numerical model (neural
network, radial basis functions, wavelets) possessing the ability to interpolate
and extrapolate the data samples, in a manner semantically consistent with the
behavior of sim′

2.
We note that this parameter-mapping approach is inadequate for many cases

of simulation incompatibility. For example, no amount of parameter mapping can
create new degrees of freedom in sim′

2 or force the frequency of data output from
sim1 to increase in order to meet sim2’s temporal requirements. The simulations
will have to adjust to the run-time data properties. Furthermore semantic in-
compatibilities between simulations require more substantial alterations to unite
their data paths. These more complex simulation transformations are currently
being studied by the COERCE community.

4 Application to Soccer

We will demonstrate simulation transformation in a DDDAS created to imple-
ment a physical simulation of robotic soccer. Simulated robotic soccer teams
are showcased each year in the RoboCup competition. Recent RoboCup games
demonstrate a high degree of human-like intelligence by the autonomous players.
Each team is composed of eleven physically simulated players, all of which are
controlled during the game by an autonomous control algorithm that specifies
unique player behaviors such as protecting the ball or kicking the ball up the
field. The conventional player control algorithms make little use of run-time data
about their opponents’ behaviors, primarily because each player only has access
to local information about the opponent-player locations. We seek to improve
the performance of one of these conventional controllers by infusing additional
data at run time that contains the locations of all the players.

We propose to improve performance by using the additional run-time data to
generate predictions about future player positions. The existing soccer simulator
specifies where players will be after one timestep, but it cannot accurately predict
player positions further into the future. Due to the aforementioned complexity
of transforming a simulation through source code modification, we interface the
existing soccer simulation with its data-driven version using our data mapping
approach.

The run-time data utilized by the data-driven version of the soccer simulator
is obtained from a virtual camera simulation (sim1 from our earlier example).
The virtual camera is observing a simulated soccer game from a bird’s-eye posi-
tion above the field and outputting virtual snapshots (o1). The soccer simulator
(sim2) must adapt to this new data and improve the quality of its agents’ actions
(o2) by specifying where the players will be after one timestep and predicting
their locations further into the future.

The DDDAS is a composition of sim1 and sim2 and their data are incompat-
ible. The input to sim2 is the position, orientation, and velocity of all 22 players

and the ball as well as additional state variables representing each player’s energy
level, perceptual model, and locomotion (sprinting, turning, stopping) abilities.
The output from sim1 is a low-resolution image created by quantizing the soccer
playing field and rendering colored 2-D Gaussians centered about the 22 players
and the ball. Each grid cell of the quantized soccer field is represented by a
pixel of the image. The final image of the field is rendered by assigning players
of Team A, Team B, and the ball the colors red, green, and blue respectively.
The amount of red, green, and blue each entity contributes to a pixel is summed
according to the distance between the player/ball and the pixel center.

Because sim2 cannot utilize the data generated by sim1 in a straightforward
manner, we pursue mapping sim2 to sim′

2 according to the method described
in the previous section. After the mapping, sim′

2 will be able to utilize the run-
time data from sim1 and output predictions of the players’ future positions. To
create the mapping, the positions of the soccer players are stored after every
timestep of a simulated soccer game. Each intermediate game state serves as the
simulation output of the previous timestep and the simulation input for the next
timestep. This accumulated database of game performance provides the training
data required to tune sim′

2. Instead of providing an exact substitution of sim2’s
functionality, the transformed sim′

2 we wish to build for this example will map
the image of player positions output by sim1 at one moment to a new state
many timesteps in the future in order to provide the desired predictive ability.

The output from sim1 is semantically incompatible with the input required
by sim2. Because we are unable to transform the output from sim1 to match the
format required by sim2, we instead transform sim2 so it accepts the output of
sim1 as input. The database of game states that we created serves to characterize
the behavior of sim2 and we map each state to a format matching the output
of sim1 by using the camera simulation to create the corresponding image for
each. Instead of storing data from sim2’s native data format, the database now
describes sim2’s execution behavior as a mapping from one image of game state
to subsequent images.

4.1 Building sim
′

2

The image database represents the performance of sim′

2 in specific circum-
stances, but to be useful at run time in the DDDAS, sim′

2 must produce correct
outputs for inputs that are not in the database. For a unique input, i, sim′

2

produces output in two stages: a matching algorithm uses a similarity metric to
first compare i to all images in the database and then a prediction algorithm
constructs o′2 as a function of i’s similarity to the database frames and their
outputs. Using this process, the transformed simulation, sim′

2, will regenerate
the mappings contained within the database when provided with identical inputs
and will approximate the mapping for other inputs.

All the images stored in the database are represented by I. Each image of I

is an element of the set of all images, I. The ordering of the image sequences in
the database is preserved to maintain time-dependent frame correlations. The
matching algorithm compares the camera output image to all the images in the

database and evaluates the similarity of each pair by assigning a match value
in the range [0, 1]. The similarity Tpq between two images p, q ∈ I is measured
by computing the Tanimoto coefficient [5] between the vector representation of
each image:

Tpq =

−→
P ·

−→
Q

−→
P ·

−→
P +

−→
Q ·

−→
Q −

−→
P ·

−→
Q

(1)

The measured Tanimoto coefficients are converted into weights, w, that map
exactly to [0, 1] in order to better distinguish the most similar images and to
further reduce the contribution of low-similarity matches:

upq = Tpq − min
q

(Tpq) (2)

wpq = (
upq

maxq(upq)
)2 (3)

After all images in the database have been assigned a weight, the output image
can be computed through a weighted average of all the images.

4.2 Experimental Results

To evaluate the effectiveness of our data-driven prediction technique, we used
sim′

2 to predict the game state δt timesteps in the future for every frame of a
new soccer game. We constructed sim′

2 from the 6,000 state vectors of player
positions obtained during the execution of one simulated soccer game. We use
the Tanimoto similarity measure to compare this predicted output to the actual
state to determine the accuracy of the transformed simulation. As a reference
technique, we constructed a baseline kinematic extrapolator that computes an
output image based on the velocities and positions of the player and ball. Because
the simulated soccer players are physically simulated, the kinematic extrapolator
should perform well for small δt values, but it will fail to predict the accelerations
and changes in direction caused by the dynamic nature of the game.

Figure 2 demonstrates the comparison of our data-driven predictor to the
kinematic extrapolator in seven different experiments. The length and width
of the quantized soccer field image in each is 40 and the number of frames
simulated by the two systems, δt, ranges from five to 50. Although the kinematic
extrapolator performs better for small δt values, its performance degrades rapidly
as δt increases and the data-driven predictor consistently outperforms it for
values of δt greater than 26.

5 Conclusion

We have presented a semi-automated method for transforming – coercing – sim-
ulations to meet the new requirements that arise at run time in dynamic, data-
driven applications. We have discussed an example from RoboCup where we

Fig. 2. This graph plots the prediction performance of the data-driven predictor (bold)
and the kinematic extrapolator (grey) for seven experiments. The line for each of the
seven experiments is generated by plotting the prediction lookahead value (δt) against
the average of the similarity measure across all images in that test game log. A perfect
score of 1.0 indicates an exact match between the predicted images and the actual
future image from the test data.

have applied ideas from COERCE to effect data alignment and capitalize on
the infusion of new data. We have experienced some encouraging success in the
transformation of our position-predicting simulation, as we have reported here.
Further, our study of simulation transformation has provided not only another
example demonstrating the viability of COERCE-like transformations in data-
driven applications, but it has also provided us with insights into how to further
develop COERCE technology.

References

1. J. Carnahan, P. Reynolds, and D. Brogan. Semi-automated abstraction, coercion,
and composition of simulations. In Interservice/Industry Training, Simulation, and
Education Conference, 2003.

2. P. Davis and J. Bigelow. Motivated metamodels. In Proceedings of the 2002 PerMIS
Workshop, 2002.

3. D. Drewry, P. Reynolds, and W. Emmanuel. An optimization-based multi-resolution
simulation methodology. In Winter Simulation Conference, 2002.

4. R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neural network
emulation and control of physics-based models. In Proceedings of SIGGRAPH ’98,
pages 9–20. ACM Press, July 1998.

5. T. Tanimoto. Internal report. In IBM Technical Report Series, November, 1957.
6. S. Waziruddin, D. Brogan, and P. Reynolds. The process for coercing simulations.

In Fall Simulation Interoperability Workshop, 2003.

