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Compile-Time Planning for Overhead
Reduction in Software Dynamic
Translators
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Software dynamic translation (SDT) is a technology for modifying programs
as they are running. The overhead of monitoring and modifying a running
program’s instructions is often substantial in SDT systems. As a result, SDT
can be impractically slow, especially in SDT systems that do not or can not
employ dynamic optimization to offset overhead. This is unfortunate since
SDT has many advantages in modern computing environments and interest-
ing uses of SDT continue to emerge. In this paper, we describe techniques to
reduce the overhead of SDT. In particular, we present a compile-time plan-
ning technique to reduce the overhead due to indirect branch handling. Our
results show that this technique is very effective and can improve SDT per-
formance by up to 36%, with an average of 20%.

KEY WORDS: Dynamic translation; dynamic optimization; instruction traces.

1. INTRODUCTION

Software dynamic translation (SDT) is a technology that allows programs
to be modified as they are running. SDT systems virtualize aspects of
the host execution environment by interposing a layer of software between
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program and CPU. This software layer mediates program execution by
dynamically examining and translating a program’s instructions before
they are run on the host CPU. Recent trends in research and commercial
product deployment strongly indicate that SDT is a viable technique
for delivering adaptable, high-performance software into today’s rapidly
changing, heterogeneous, networked computing environment.

SDT is used to achieve distinct goals in a variety of systems. One of
these goals is binary translation. Cross-platform SDT allows binaries to
execute on non-native platforms. This allows existing applications to run
on different hardware than originally intended. Binary translation makes
introduction of new architectures practical and economically viable. Some
popular SDT systems that fall into this category are FX!32,(1) DAISY,(2)

UQDBT,(3) and Transmeta’s Code Morphing technology.(4)

Another goal of certain SDT systems is improved performance.
Dynamic optimization of a running program offers several advantages
over compile-time optimization. Dynamic optimizers use light-weight exe-
cution profile feedback to optimize frequently executed (hot) paths in the
running program. Also, dynamic optimizers can continually monitor exe-
cution and reoptimize if the program makes a phase transition that creates
new hot paths. Finally, dynamic optimizers can perform profitable optimi-
zations such as partial inlining of functions and conditional branch elim-
ination that would be too expensive to perform statically. SDT systems
that perform dynamic optimization include Dynamo,(5) DBT,(6) and Voss
and Eigenmann’s remote dynamic program Optimization system.(7) Some
of the binary translators previously described also perform some dynamic
optimization (e,g., DAISY, FX!32, and Transmeta’s Code Morphing).

SDT is also useful for virtualized execution environments. Such envi-
ronments provide a framework for architecture and operating systems
experimentation as well as migration of applications to different operating
environments. The advantage of SDT in this area is that the simulation of
the virtual machine is fast – sequences of virtual machine instructions are
dynamically translated to sequences of host machine instructions. Exam-
ples of this type of SDT are Embra,(8) Shade,(9) and VMware.(10)

All uses of SDT can benefit from reductions of dynamic translation
overhead. Reducing overhead improves overall application performance,
allows SDT systems to implement additional functionality (e.g., additional
optimizations, more detailed profiling, etc.), and enables uses of SDT in
new application areas. In this paper, we describe a new technique for
reducing the overhead of SDT with compile-time planning. Using Strata, a
framework we designed for building SDT applications (for uni-processor
and multi-processor machines), we performed experiments to identify and
measure the sources of overhead in the basic translation actions done by
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SDT. We observed that SDT overhead stems from just a few sources,
including conditional and indirect branches. In particular, we implemented
a technique for reducing SDT overhead associated with indirect control
transfers. The resulting improvement in overhead ranges from 0% to 39%
and demonstrates that compile-time knowledge can be used to improve the
performance of dynamic translators.

2. SOFTWARE DYNAMIC TRANSLATION

SDT can affect an executing program by injecting new code, mod-
ifying some existing code, or controlling the execution of the program
in some way. We have developed a reconfigurable and retargetable SDT
system,(11) called Strata, which supports many SDT applications, such as
dynamic optimization and safe execution of untrusted binaries.(12) It is
available for many platforms, including SPARC/Solaris 9, x86/Linux, and
MIPS/IRIX.

To realize a specific dynamic translator, Strata’s basic services are
extended to provide the desired functionality. Strata’s default services
implement a dynamic translator that mediates execution of native appli-
cation binaries with no visible changes to application semantics and no
aggressive attempts to optimize application performance. The basic ser-
vices include memory management, fragment cache management, applica-
tion context management, multithreading support, a dynamic linker, and a
fetch/translate engine. All of these services are retargetable and extensible.

Execution of an application under Strata begins by invoking the
Strata component known as the fragment builder with the starting pro-
gram counter (PC) of the application. The fragment builder takes the PC,
and if the application instruction at that PC is not cached, the fragment
builder forms a sequence of instructions called a fragment. Strata attempts
to make these fragments as long as possible. To this end, Strata inlines
unconditional PC-relative control transfers into the fragment being con-
structed. In this mode of operation, each fragment is terminated by a
conditional or indirect control transfer instruction. However, since Strata
needs to maintain control of program execution, the control transfer
instruction is replaced with a code trampoline that arranges to return con-
trol to the Strata fragment builder. Once a fragment is fully formed, it is
placed in the fragment cache.

The transfers of control from Strata to the application and from the
application back to Strata are context switches. On a context switch into
Strata via a trampoline, a hash table is searched to determine if there is a
cached fragment corresponding to the current PC. If a fragment is found,
Strata immediately context switches back to the application; otherwise
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it builds a corresponding fragment before context switching back to the
program. As discussed next, context switches are a large part of SDT
overhead.

3. SOURCES OF OVERHEAD

SDT overhead can degrade overall system performance substantially.
This is particularly true of dynamic translators which do not perform code
optimizations to offset dynamic translation overhead. Overhead in soft-
ware dynamic translators can come from time spent executing instructions
not in the original program, from time lost due to the dynamic transla-
tor undoing static optimizations, or from time spent mediating program
execution.

3.1. Methodology

To characterize overhead in such an SDT, we did experiments to mea-
sure where SDT systems spend their time. The experiments were done
with Strata for the SPARC (called “Strata-SPARC”) on a Sun Blade 100
(500 MHz and 256 MB RAM). In the experiments, no optimizations were
done and a 2 MB fragment cache was used. Benchmarks from SPEC2K
were compiled with the gcc C compiler (version 3.1) with “-O3” The train
inputs were used for profiling and reference inputs for actual runs.

3.2. Non-indirect Branch Handling

In Strata’s basic mode of operation, a context switch occurs after
each fragment executes. A large portion of these context switches due to
non-indirect branches can be eliminated by “linking” fragments together
as they materialize into the fragment cache. For instance, when one or
both of the destinations of a PC-relative conditional branch materialize
in the fragment cache, the conditional branch trampoline can be rewrit-
ten to transfer control directly to the appropriate fragment cache locations
rather than performing a context switch and control transfer to the frag-
ment builder.

When fragment linking is used, there are 3.5–166.5x (average 26.4x)
fewer builder re-enters than without fragment linking. This reduction in
re-enters leads to a large performance improvement. Without fragment
linking, there is a large slowdown over native execution – an average
of 13x (23.4–2.4x) across all benchmarks. With fragment linking, the
resulting slowdowns are much lower, but still high – an average of 3.2x

across all benchmarks – and require other mechanisms to further reduce
overhead.
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3.3. Indirect Branch Handling

After applying fragment linking, the majority of the remaining
overhead is due to indirect control transfer instructions. Because the tar-
get of an indirect control transfer is only known when the branch exe-
cutes, Strata cannot link fragments ending in indirect control transfers to
their targets. As a consequence, such fragments must save the application
context and call the fragment builder with the computed branch-target
address. The likelihood is very high that the requested branch target is
already in the fragment cache, so the builder can immediately restore the
application context and begin executing the target fragment. On the Sun
Blade 100, the time between reaching the end of the indirect control trans-
fer and beginning execution at the branch target averages about 250 cycles.
For programs that execute many indirect control transfers, the overhead
of handling the indirect branches can be substantial. To improve Strata’s
overhead further, we must either reduce the latency of individual context
switches or the overall number of switches due to indirect control trans-
fers. The code which manages a context switch is highly tuned assembler
and it is unlikely this code can be improved any further. Thus, the chal-
lenge is how to reduce the number of context switches due to indirect
branches.

4. COMPILE-TIME PLANNING FOR OVERHEAD REDUCTION

While fragment linking is effective for non-indirect branches, it does
not handle indirect branches because the target address is unknown dur-
ing fragment translation. However, profile information can be used, with
compile-time planning, to predict the likely target of an indirect branch. In
this approach, “trace plans” are generated by the compiler to determine
fragment sequences, called instruction traces, which are on a hot path. The
traces are used by the dynamic translator to place fragments contiguously
in the fragment cache and to generate efficient inline code that jumps to
the next fragment in the trace or invokes a separate translation process
when the indirect branch target address is off trace.

4.1. Determining Instruction Traces

To determine the instruction traces, we developed an algorithm, called
“next heaviest edge” (NHE), that uses an execution frequency profile. The
profile is a set of CFG edges and their execution counts. NHE constructs
a weighted control flow graph (WCFG) from the profile that is traversed
to identify traces. In the WCFG, a vertex is a fragment from the profile
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and an edge is a pair of fragments with a weight. The WCFG is not the
same as the CFG due to the presence of fragments and the absence of
edges that were not executed.

Table I shows pseudocode for NHE. The algorithm begins by initial-
izing a set of traces, T, to the empty set, a list of edge counts, count [],
to 0, and constructs the WCFG G (line 2), Function nextHead () finds
a hot edge, seed, to serve as a start point for a trace (line 3). A check
is made (also line 3) to ensure that the number of traces does not grow
too large. The entry count [seed] is incremented to indicate how many
duplicates there are of that edge in all traces (line 5). If seed is in too
many traces, it is removed from G to avoid adding it to any subsequent
traces (line 6).

The algorithm attempts to expand the trace in both forward and
backward directions by adding edges from both the successor and prede-
cessor edges of the trace head or tail. A trace is first expanded in the for-
ward direction (lines 9–13). In this case, the successor to the trace tail with

Table I. Next Heaviest Edge Algorithm

Line Description

1 Traces nextHeaviestEdge(Profile P) begin
2 int count[ ]← ∅; Traces T← ∅; WCFG G–constructWCFG(P);
3 while ((Edge seed ← nextHead(G)) �= ∅ and |T| < MAXTRACES)
4 Trace t ← seed;
5 count[seed] ← count[seed] + 1; //number of instances
6 if (count[seed] > MAXDUP) then removeEdge(G,seed);
7 boolean expsucc ← true, exppred ← true;
8 repeat
9 if (expsucc) then

10 Edge s ← heaviestEdge(G, SUCC, t); expsucc ← false;
11 if (s �= ∅ and s.weight > HOTNESS) then
12 expsucc ← addEdge(G,SUCC,t,s,seed,count);
13 end if;
14 if (exppred) then
15 Edge p← heaviestEdge(G,PRED,t); exppred←false;
16 if (p �= ∅ and p.weight > HOTNESS) then
17 exppred←addEdge(G,PRED,t,p,seed,count);
18 end if;
19 until (¬(expandsuc or exppred))
20 T ← T ∪ t; // add new trace t to trace set T
21 end while;
22 return T;
23 end
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the largest weight is selected. The selected successor, s, is added to the
trace only if it meets a hotness criterion, the length of t has not exceeded
a threshold, and the relative weight of s to the trace tail is sufficiently
large (the latter two conditions are checked by function add Edge()). If
any of these conditions are not satisfied, t is terminated in that direction
(i.e., expandsucc is set to false). The same process is repeated for the
predecessor edge of the trace head (lines 14–18). The expansion of t is
terminated when the trace cannot be expanded in either the backward and
forward directions (line 19). Finally, the newly created trace is added to T
(line 20).

The function addEdge( ) is shown in Table II. This function adds
an edge, e, to a trace, t, if three checks are satisfied. The first check is
whether the length of t is below a threshold (line 3). If the trace is short
enough, the second and third checks based on the relative weight of e are
made (lines 11–19). The second check determines whether e accounts for a
large portion of the execution flow associated with edge s (the seed). The

Table II. Add an Edge to a Trace

Line Description

1 Bool addEdge(WCFG G, Direction d, Trace t, Edge e, Edge s, int count[ ])
2 begin
3 if (|t | < MAXSIZE) then
4 Edges K ← ∅;
5 if (d = SUCC) then K ← successorEdges(G,t);
6 else K ← predecessorEdges(G,t); // predecessor
7 int total weight ← 0;
8 forall (Edge k ∈ K) do
9 total weight ← total weight + k.weight;

10 end forall;
11 float flow ← FLOWFRACT × s.weight;
12 float dom ← DOMFRACT × total weight;
13 if (e.weight > flow and e.weight > dom) then
14 if (d = SUCC) then t ← t . e; // add to trace end
15 else t ← e , t; // add to trace beginning
16 e.weight ← e.weight - flow;
17 count[e] ← count[e] + 1;
18 if (count[e] > MAXDUP) then removeEdge(G, e);
19 return true;
20 end if;
21 end if;
22 return false;
23 end
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threshold for the amount of flow is computed on line 11. If e accounts for
a portion of the flow that is equivalent to the constant FLOWFRACT, the
edge can be added to the trace. The third condition determines whether e
is the dominant edge among all successors (or predecessors), Lines 8–10
compute the total weight among all successors (or predecessors) for the
trace tail (or head). Based on this weight, a threshold is computed on line
12 for the dominance of e. If e’s weight is above this threshold, it can
be added to t. The edge is appended to t’s tail when expanding forwards
(line 14) and to t’s head when expanding backwards (line 15).

When e is added, its weight is decreased by the amount of flow asso-
ciated with the edge (line 16). Decreasing the weight ensures that the pri-
ority of e is reduced based on the amount of flow “accounted for” by the
current trace. Finally, the function returns true when an edge is success-
fully added to the trace to indicate that further expansion is possible.

4.2. Generating and Using the Trace Plan

Once the traces have been determined, they are used to generate a
trace plan, which consists of the sequence of fragments associated with
each trace. To generate the plan, the traces are converted from their edge
representation to a fragment representation by replacing each edge with
the addresses of its fragment vertices. A fragment address is recorded as
an offset from the start of the program binary that can be used to deter-
mine the location of the fragment when the program is loaded at run-time.

The trace plan is read by Strata when the program is executed.
Because the plan is a list of addresses (i.e., not actual code), a code
generation step is done to emit the trace code into the fragment cache.
The code generator processes each trace and traverses the instructions in
the fragments in the trace. For every instruction in a trace, it is fetched,
translated and emitted into the fragment cache. Indirect branches and con-
ditional branches need special attention. For indirect branches, the tar-
get address should be on the trace. However, because an indirect branch
changes control flow based on a register value, a check is inserted to
ensure that the target is the next fragment. If the target is not on the
trace, then control is transferred to a “trace exit” that translates the indi-
rect’s target address by context switching to Strata. Conditional branches
are handled by rewriting the branch to make its not-taken direction be
the next fragment in the trace. This step is essentially the same as frag-
ment linking, except the branch condition may be inverted to ensure that
the hot branch direction is on the trace. Also, unlike fragment linking,
the code emitted for handling a conditional branch is simplified because a
trampoline is unnecessary for the on-trace target, After the code has been
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generated for all fragments, an exit fragment is emitted at the end of the
trace.

4.3. Experiments

To investigate the overhead reduction with traces, we profiled the
benchmarks with their training data sets. The profile was used to deter-
mine instruction traces with NHE. These traces were saved to preload the
fragment cache whenever Strata-SPARC is invoked. In the subsequent run,
we used the reference input set for each benchmark.

Figure 1 shows how static trace formation can reduce the number
of builder re-enters due to indirect branches. The figure shows that static
trace formation has 1.01–1.8x (average 1.35x) fewer builder re-enters than
fragment linking alone. Figure 2 shows how the reduction in builder
re-enters affects performance. The figure shows the slowdown of preload-
ing traces over not preloading traces. The improvement over fragment
linking ranges from 0% to 36%, with an average of 20%. From our experi-
ments, the improvement is due to both a reduction in context switches and
instruction cache misses. These results are encouraging because they show
that compile-time information can be used to reduce SDT overhead.

5. RELATED WORK

Software dynamic translation has been used for a number of pur-
poses (see Section 1), including dynamic binary translation of one machine

Fig. 1. Improvement in number of re-enters with trace plans.
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Fig. 2. Improvement in slowdown with trace plans.

instruction set to another,(1−4) emulation of operating systems (e.g.,
VMWare), and machine simulation.(8,9) There has also been work on
general infrastructures for SDT that are similar to Strata. Walkabout is
a retargetable framework that uses a machine-dependent intermediate rep-
resentation to translate and execute binary code from a source machine
on a host machine.(13) Another framework is DynamoRIO,(14) which is a
library and set of API calls for building SDTs on the x86. Unlike Strata,
DynamoRIO was not designed with retargetability in mind.

To achieve good performance in a SDT system, it is important to
reduce the overhead of conditional and indirect branches. Shade(9) and the
Embra(8) emulator use a technique called chaining to link cache-resident
code fragments to bypass translation lookups. This technique is similar
to fragment linking in Strata, which avoids context switches. Dynamo(5)

and DAISY(2) convert indirect branches to chains of conditional branches
to improve performance. Rather than eliminate context switches, the con-
ditional branch chains remove indirect branch penalties. Since the con-
ditional branch chains must be kept short to maintain any increases
in performance, an indirect branch typically terminates the conditional
branch chain to handle the case when none of the conditional branch
comparisons actually match the branch-target address. For programs with
many switch statements and large numbers of frequently executed cases,
e.g., gcc, the conditional branch comparisons will frequently not match
the branch-target address resulting in a context switch. However, with
our approach, as long as the compile-time traces are representative of
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program behavior, the branch-target address should match inlined address
translation.

6. SUMMARY

Reducing the overhead of software dynamic translation (SDT) is crit-
ical for making SDT systems practical. Using SPEC2K, we performed
detailed measurements to determine major sources of SDT overhead. Our
measurements revealed that the major source of overhead comes from
conditional and indirect branches. To reduce the overhead of conditional
branches, a technique called fragment linking is used to rewrite the tram-
poline code to transfer control directly to the appropriate fragment rather
than doing a context switch. This technique reduced overhead by a fac-
tor of 4. For indirect branches, we described a compile-time planning
approach that generates instruction traces to inline target address transla-
tion. This technique improved performance by up to 36% over fragment
linking.

The results in this paper demonstrate that static information can
be successfully used to reduce SDT overhead. We are continuing to
develop other offline and online techniques to reduce overhead. Prelimi-
nary results indicate that by applying the techniques described here along
with dataflow analysis of the executable, it may be possible to eliminate
SDT overhead entirely. If achieved, this would make SDT a powerful
tool for helping software developers achieve a variety of important goals
including better security, portability, and better performance.
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