Feb 10 Slides

1. Power Sets
2. Disjoint Sets
3. Set-builder Notation
4. Sequences
5. Cartesian Products

Reminder: Subset Definition

Set A is a subset of set B

$$
A \subseteq B
$$

If \& only if all elements of \mathbf{A} are also in B

Power sets

4.1.3 Power Set

The set of all the subsets of a set, A, is called the power set, $\operatorname{pow}(A)$, of A. So

$$
B \in \operatorname{pow}(A) \quad \text { IFF } \quad B \subseteq A
$$

For example, the elements of $\operatorname{pow}(\{1,2\})$ are $\emptyset,\{1\},\{2\}$ and $\{1,2\}$.

Power sets -- Break-outs

1.) What is the power-set of $\}$?

2.) What is the power set of $\{a, b, c\}$
3.) What is the power set of $\{W, X, Y, Z\}$

Power sets -- Break-outs

1.) What is the power-set of $\}$?

$$
\{\}\}
$$

2.) What is the power set of $\{a, b, c\}$
$\{\},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$
3.) What is the power set of $\{W, X, Y, Z\}$

Can we see a rule/pattern to

 determine the cardinality of a powerset?
Can we see a rule/pattern to

 determine the cardinality of a powerset?$$
|\mathcal{P}(X)|=2^{|X|}
$$

Other Notations

$$
\begin{aligned}
& \mathcal{P}(X) \\
& \mathcal{P}(X) \\
& \mathscr{P}(X) \\
& \wp(X)
\end{aligned}
$$

Disjoint Sets

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint
- $\{1,2\}$ and \varnothing are disjoint
- Their intersection is the empty set

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint
- $\{1,2\}$ and \varnothing are disjoint
- Their intersection is the empty set
- \varnothing and \varnothing are disjoint!
- Their intersection is the empty set

Ways to describe Sets

- Listing out the elements of a set works well for sets that are small and finite. What about larger sets?
- Set Builder Notation!

The set of The natural numbers

https://Itcconline.net/greenl/courses/152a/definitions/SETS.HTM

The set of The natural numbers

https://Itcconline.net/greenl/courses/152a/definitions/SETS.HTM

Set-Builder Notation

Set-Builder Notation

Let's formalize our set operators in "set-builder notation"

Quick Side-Note:

-We will need to link together multiple "conditions" with "and's", "not's" and "or's"

Special symbols:

$\begin{array}{ll}\checkmark \text { is "or" } & \text { (notice similarity to } U \text {) } \\ \Lambda \text { is "and" } & \text { (notice similarity to } \cap \text {) }\end{array}$
$ᄀ$ is "not"

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers
$E=\{x \in \mathcal{N} \mid x>2\}=\{3,4,5,6, \ldots\}$
in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S
$$

For Reference:
The set of The natural numbers
V is "or"
\wedge is "and"
$E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}$
\neg is "not"
in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
(notice similarity to \cup)
(notice similarity to \cap)

The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

Set-Builder Notation -- Your turn!

Union $S \cup T$: the elements that belong either to S or to T (or both).

$$
S \cup T=
$$

For Reference:
V is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- Your turn!

Union $S \cup T$: the elements that belong either to S or to T (or both).

$$
S \cup T=\{x \in U \mid x \in S \vee x \in T\}
$$

For Reference:
V is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

$$
S \backslash T=
$$

For Reference:
\checkmark is "or"
\wedge is "and"
ᄀ is "not"

Set-Builder Notation -- Your turn!

Difference $S \backslash T$: the elements that belong to S but not to T.

$$
S \backslash T=\{x \in U \mid x \in S \wedge x \notin T\}
$$

For Reference:
V is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

High Level: Sets vs Sequences

Both can:

-Contain anything
-Can have a sequence of sequences, set of sets, sequence of sets, etc
-Cannot be modified

Sets:

-no duplicates
-no order
-has cardinality

Sequences:

-can have duplicates
-has order
-has length
Lists, Arrays, Ordered pairs, Tuples, etc!

Cartesian Product of Sets

Ordered Pair: An ordered pair is a sequence with 2 elements. It is a pair of objects where one element is designated first and the other element is designated second, denoted (a, b).

Cartesian Product: The Cartesian product of two sets A and B, denoted $\mathrm{A} \times \mathrm{B}$, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second.

In set-builder notation, $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.

Cartesian Product of Sets

$$
\begin{gathered}
\{1,2\} \times\{3,4,5\} \\
=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}
\end{gathered}
$$

Cartesian Product of Sets

$$
\begin{gathered}
|\{1,2\} \times\{3,4,5\}| \\
=|\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}| \\
=6
\end{gathered}
$$

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\}$?

