High Level: Sets vs Sequences

Both can:

-Contain anything

-Can have a sequence of sequences, set of sets, sequence of sets, etc -Cannot be modified

Sets: -no duplicates -no order -has cardinality

Sequences:

-can have duplicates -has order -has length

Lists, Arrays, Ordered pairs, Tuples, etc!

Ordered Pair: An ordered pair is a **sequence with 2 elements**. It is a pair of objects where one element is designated first and the other element is designated second, denoted (a, b).

Cartesian Product: The Cartesian product of two sets A and B, denoted $A \times B$, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second.

In set-builder notation, $A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$.

$= \{(1, 3), (3 (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)\}$

 $|\{1, 2\} \times \{3, 4, 5\}|$ = |{(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}| = 6

Your Turn: What is $\{1, 2\} \times \{2, 3\}$?

Your Turn: What is $\{1, 2, 3\} \times \{2, 3, 4\}$?

Answer: { (1, 2), (1, 3), (2, 2), (2, 3) }

We can write $\{1, 2, 3\}x\{1, 2, 3\} = \{1, 2, 3\}^2$ to take the Cartesian Product of a set with itself.

Your Turn: What is
$$\{1, 2, 3\}^2$$
?

We can write $\{1, 2, 3\}^2$ to take the Cartesian Product of a set with itself.

Your Turn: What is
$$\{1, 2, 3\}^2$$
?

Answer: $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 2), (3, 3)\}$

We can write $\{1, 2, 3\}^2$ to take the Cartesian Product of a set with itself.

Your Turn: What is
$$\{1, 2, 3\}^2$$
?

Answer: $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 2), (3, 3)\}$

$$\{0, 1, 2, 3\}^2$$

$\mathbb{R} \times \mathbb{R}$: The coordinate plane

Your Turn: What is $\{1, 2\} \times \{2, 3\} \times \{1, 3\}$?

Answer:

Your Turn: What is $\{1, 2\} \times \{2, 3\} \times \{1, 3\}$?

Answer: {(1, 2, 1), (1, 2, 3), (1, 3, 1), (1, 3, 3), (2, 2, 1), (2, 2, 3), (2, 3, 1), (2, 3, 3)}

Your Turn: What is $\{1\} \times \{1\} \times \{1, 0\}$?

Answer:

Your Turn: What is $\{1\} \times \{1\} \times \{1, 0\}$?

Answer: $\{(1, 1, 1), (1, 1, 0)\}$

Your Turn: What is $\{1, 2\} \times \{3, 4\} \times \{\}$?

Answer:

Your Turn: What is $\{1, 2\} \times \{3, 4\} \times \{\}$?

Answer: {}

Your Turn: What is $\{1, 2\}^0$?

Your Turn: What is $\{1, 2\}^0$?

Answer: $\{()\}$

Your Turn: What is $\{1, 2\}^0$?

Answer: $\{()\}$

(we want $S^0 \times S = S$)

Propositions A proposition is a statement that is either true or false

Examples of Proposition

This sentience is a proposition.

Sets cannot have duplicates.

It snowed last night.

2+2 = 3

Examples of things that aren't <u>Proposition</u>

How was your day today?

What is a number?

Be quiet!

Propositions A proposition is a statement that is either true or false

Examples of Proposition

(Eggs are blue) = *p*

(I am a human) = q

(2 + 3 = 5) = r

Examples of things that aren't Proposition

What are you doing Friday?

What is 3 + 3?

Sit down!

A proposition is a statement that is either true or false

When dealing with propositions, we abstract away difficulties of defining, and we can just give them letters (define variables), like *p*

A proposition, *p*, is a statement that is either true or false. "True" or "False" is considered the "truth value" of *p*.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	op or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

A proposition is a statement that is either true or false

We can combine and relate propositions with *connectives:*

A proposition is a statement that is either true or false

We can combine and relate propositions with *connectives:*

- V is "or"
- Λ is "and"
- ¬ is "not"

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- ∧ is "and"
- ¬ is "not"

$$= \{ x \in U \mid x \in S \land x \not\in T \}$$

We can modify, combine and relate propositions with *connectives:*

- V is "or"
- Λ is "and"
- ¬ is "not"

$S \setminus T = \{ x \in U \mid x \in S \land x \notin T \}$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- ∧ is "and"
- ¬ is "not"

$$= \{ x \in U \mid x \in S \lor x \in T \}$$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$S \cup T = \{x \in U \mid x \in S \lor x \in T\}$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$= \{ x \in U \mid x \in S \land x \in T \}$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$S \cap T = \{x \in U \mid x \in S \land x \in T\}$

We can modify, combine and relate propositions with *connectives:*

- V is "or"
- Λ is "and"
- ¬ is "not"

Set theory is a branch of mathematical logic. So it makes sense to use logical language and symbols to describe sets.

"Not" operator

How to define:

Make a truth table

"Not" operator

"And" operator

"And" operator

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

"Or" operator

"Or" operator

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

"Implies" operator

If p, then q

The conditional $p \rightarrow q$ can be expressed by different sentences, some of them are listed below:

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- q follows from p
- p only if q

"Implies" operator

