High Level: Sets vs Sequences

Both can:

-Contain anything
-Can have a sequence of sequences, set of sets, sequence of sets, etc
-Cannot be modified

Sets:

-no duplicates
-no order
-has cardinality

Sequences:

-can have duplicates
-has order
-has length
Lists, Arrays, Ordered pairs, Tuples, etc!

Cartesian Product of Sets

Ordered Pair: An ordered pair is a sequence with 2 elements. It is a pair of objects where one element is designated first and the other element is designated second, denoted (a, b).

Cartesian Product: The Cartesian product of two sets A and B, denoted $\mathrm{A} \times \mathrm{B}$, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second.

In set-builder notation, $A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$.

Cartesian Product of Sets

$$
=\{(1,3),(3(1,4),(1,5),(2,3),(2,4),(2,5)\}
$$

Cartesian Product of Sets

$$
\begin{gathered}
|\{1,2\} \times\{3,4,5\}| \\
=|\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}| \\
=6
\end{gathered}
$$

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\}$?

Cartesian Product of Sets

Your Turn: What is $\{1,2,3\} \times\{2,3,4\}$?
Answer: $\{(1,2),(1,3),(2,2),(2,3)\}$

Cartesian Product of Sets

We can write $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\} \mathbf{x}\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}^{\mathbf{2}}$ to take the Cartesian Product of a set with itself.

Your Turn: What is $\{1,2,3\}^{2}$?

Cartesian Product of Sets

We can write $\{1,2,3\}^{2}$ to take the Cartesian Product of a set with itself.

Your Turn: What is $\{1,2,3\}^{2}$?

Answer: $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1)$,

$$
(3,2),(3,3)\}
$$

Cartesian Product of Sets

We can write $\{1,2,3\}^{2}$ to take the Cartesian Product of a set with itself.

Your Turn: What is $\{1,2,3\}^{2}$?

Answer: $\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1)$,

$$
(3,2),(3,3)\}
$$

$$
\{0,1,2,3\}^{2}
$$

$$
\{0,1,2,3\}^{2}
$$

Cartesian Product of Sets

$\mathbb{R} \times \mathbb{R}:$ The coordinate plane

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\} \times\{1,3\}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\} \times\{1,3\}$?

Answer: $\{(1,2,1),(1,2,3),(1,3,1),(1,3,3),(2,2,1)$,

$$
(2,2,3),(2,3,1),(2,3,3)\}
$$

Cartesian Product of Sets

Your Turn: What is $\{1\} \times\{1\} \times\{1,0\}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1\} \times\{1\} \times\{1,0\}$?

Answer: $\{(1,1,1),(1,1,0)\}$

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{3,4\} \times\{ \}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{3,4\} \times\{ \}$?

Answer: \{\}

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Answer: $\{()\}$

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Answer: $\{()\}$

$$
\text { (we want } S^{0} \times S=S \text {) }
$$

Propositions

A proposition is a statement that is either true or false

Examples of Proposition
This sentience is a proposition.
Sets cannot have duplicates.
It snowed last night.

$$
2+2=3
$$

Examples of things that aren't Proposition

How was your day today?
What is a number?
Be quiet!

Propositions

A proposition is a statement that is either true or false

Examples of Proposition
(Eggs are blue) $=p$
(I am a human) = q

$$
(2+3=5)=r
$$

Examples of things that aren't Proposition

What are you doing Friday?
What is $3+3 ?$
Sit down!

Propositions

A proposition is a statement that is either true or false

When dealing with propositions, we abstract away difficulties of defining, and we can just give them letters (define variables), like p

Propositions

A proposition, p, is a statement that is either true or false. "True" or "False" is considered the "truth value" of p.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

Propositions

A proposition is a statement that is either true or false

We can combine and relate propositions with connectives:

Propositions

A proposition is a statement that is either true or false

We can combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"
$\square=\{x \in U \mid x \in S \wedge x \notin T\}$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \backslash T=\{x \in U \mid x \in S \wedge x \notin T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"
$\square=\{x \in U \mid x \in S \vee x \in T\}$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \cup T=\{x \in U \mid x \in S \vee x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"

$$
=\{x \in U \mid x \in S \wedge x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

Set theory is a branch of mathematical logic. So it makes sense to use logical language and symbols to describe sets.

"Not" operator

How to define:

Make a truth table

"Not" operator

p	$\neg p$
T	F
F	T

"And" operator

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

"Or" operator

"Or" operator

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

"Implies" operator

If p, then q

The conditional $p \rightarrow q$ can be expressed by different sentences, some of them are listed below:

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- q follows from p
- p only if q

"Implies" operator

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

