• **Quiz Friday:** practice

- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

• Quiz Friday: <u>practice</u>

- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

$$\{0, 1, 2, 3\}^2$$

$\mathbb{R} \times \mathbb{R}$: The coordinate plane

Your Turn: What is $\{1, 2\} \times \{2, 3\} \times \{1, 3\}$?

Answer:

Your Turn: What is $\{1, 2\} \times \{2, 3\} \times \{1, 3\}$?

Answer: {(1, 2, 1), (1, 2, 3), (1, 3, 1), (1, 3, 3), (2, 2, 1), (2, 2, 3), (2, 3, 1), (2, 3, 3)}

Your Turn: What is $\{1\} \times \{1\} \times \{1, 0\}$?

Answer:

Your Turn: What is $\{1\} \times \{1\} \times \{1, 0\}$?

Answer: $\{(1, 1, 1), (1, 1, 0)\}$

Your Turn: What is $\{1, 2\} \times \{3, 4\} \times \{\}$?

Answer:

Your Turn: What is $\{1, 2\} \times \{3, 4\} \times \{\}$?

Answer: {}

Your Turn: What is $\{1, 2\}^0$?

Your Turn: What is $\{1, 2\}^0$?

Answer: $\{()\}$

Your Turn: What is $\{1, 2\}^0$?

Answer: $\{()\}$

(we want $S^0 \times S = S$)

• Quiz Friday: <u>practice</u>

- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

Set-Builder -- duplicate elements

Question 78 (see above)

$$\Big\{\{a,b\} \ \Big| \ (a\in A) \wedge ig(b\in\{4,8\}ig)\Big\}$$

Mulitquestion Consider the following sets: $A = \{2, 4, 8\}, B = \{1, 2, 4\}, C = \mathcal{P}(\{1, 2\})$

Evaluate each expression

- Quiz Friday: <u>practice</u>
- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

Propositions

A proposition, *p*, is a statement that is either true or false. "True" or "False" is considered the "truth value" of *p*.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	op or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

Propositions

A proposition is a statement that is either true or false

We can combine and relate propositions with *connectives:*

"Not" operator

How to define:

Make a truth table

"Not" operator

"And" operator

		And
P	Q	$P \land Q$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

"Or" operator

		Or		
Р	Q	P V Q		
F	F	F		
F	Т	Т		
Т	F	Т		
Т	Т	Т		

"Implies" operator

		Implies
Р	Q	$P \rightarrow Q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

"Xor" operator

		Xor
Р	Q	P⊕Q
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

"Bi-implication" operator

		Bi-implies
P	Q	$P \leftrightarrow Q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

		Or	And	Implies	Xor	Bi-implies
Р	Q	₽VQ	$P \wedge Q$	P→Q	Р⊕Q	P⇔Q
F	F	F	F	Т	F	Т
F	Т	Т	F	Т	Т	F
Т	F	Т	F	F	Т	F
Т	Т	Т	Т	Т	F	Т

- Quiz Friday: <u>practice</u>
- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

What if we want to combine logical operators for longer expressions?

Ex:
$$\neg (P \land Q)$$

- Quiz Friday: <u>practice</u>
- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

Question 123

Consider the expression " $(P \rightarrow Q) \leftrightarrow (Q \rightarrow P)$ ". This full expression has the same truth value as

https://kytos.cs.virginia.edu/cs2102/quizzes/review.php?qid=1-1

- Quiz Friday: <u>practice</u>
- Cartesian Product of 3 or more sets
 - Set builder: duplicate elements
 - Logical Operator Definitions
 - Truth Table Example 1
 - Truth Table Example 2
 - Truth Table Example 3

What is the truth table for:

 $(P \lor Q) \to (\neg R)$

