Agenda

- Quiz Friday: practice

- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3
- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

$$
\{0,1,2,3\}^{2}
$$

$$
\{0,1,2,3\}^{2}
$$

Cartesian Product of Sets

$\mathbb{R} \times \mathbb{R}:$ The coordinate plane

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\} \times\{1,3\}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\} \times\{1,3\}$?

Answer: $\{(1,2,1),(1,2,3),(1,3,1),(1,3,3),(2,2,1)$,

$$
(2,2,3),(2,3,1),(2,3,3)\}
$$

Cartesian Product of Sets

Your Turn: What is $\{1\} \times\{1\} \times\{1,0\}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1\} \times\{1\} \times\{1,0\}$?

Answer: $\{(1,1,1),(1,1,0)\}$

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{3,4\} \times\{ \}$?

Answer:

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{3,4\} \times\{ \}$?

Answer: \{\}

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Answer: $\{()\}$

Cartesian Product of Sets

Your Turn: What is $\{1,2\}^{0}$?

Answer: $\{()\}$

$$
\text { (we want } S^{0} \times S=S \text {) }
$$

Agenda

- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

Set-Builder -- duplicate elements

Question 78 (see above)
$\{\{a, b\} \mid(a \in A) \wedge(b \in\{4,8\})\}$
Mulitquestion Consider the following sets: $A=\{2,4,8\}, B=\{1,2,4\}, C=\mathcal{P}(\{1,2\})$
Evaluate each expression

Agenda

- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

Propositions

A proposition, p, is a statement that is either true or false. "True" or "False" is considered the "truth value" of p.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

Propositions

A proposition is a statement that is either true or false

We can combine and relate propositions with connectives:

"Not" operator

How to define:

Make a truth table

"Not" operator

p	$\neg p$
T	F
F	T

"And" operator

		And
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \wedge \boldsymbol{Q}$
F	F	F
F	T	F
T	F	F
T	T	T

"Or" operator

\boldsymbol{P}	\boldsymbol{O}	$\boldsymbol{O r}$
F	$\boldsymbol{P} \boldsymbol{\mathrm { F }}$	F
F	T	T
T	F	T
T	T	T

"Implies" operator

		Implies
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$
F	F	T
F	T	T
T	F	F
T	T	T

"Xor" operator

		Xor
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \oplus \boldsymbol{Q}$
F	F	F
F	T	T
T	F	T
T	T	F

"Bi-implication" operator

		Bi-implies
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$
F	F	T
F	T	F
T	F	F
T	T	T

		$\boldsymbol{O r}$	And	Implies	Xor	Bi-implies
\boldsymbol{P}	\boldsymbol{Q}	$\boldsymbol{P} \vee \boldsymbol{Q}$	$\boldsymbol{P} \wedge \boldsymbol{Q}$	$\boldsymbol{P} \rightarrow \boldsymbol{Q}$	$\boldsymbol{P} \oplus \boldsymbol{Q}$	$\boldsymbol{P} \leftrightarrow \boldsymbol{Q}$
F	F	F	F	T	F	T
F	T	T	F	T	T	F
T	F	T	F	F	T	F
T	T	T	T	T	F	T

Agenda

- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

What if we want to combine logical operators for longer expressions?

Ex: $\neg(\boldsymbol{P} \wedge \boldsymbol{Q})$

P	Q	$\neg\left(\begin{array}{lll}P & \wedge\end{array}\right)$
T	T	
T	F	
F	T	
F	F	

First fill in the
known values

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	
T F		T F	
F T		F T	
F F		F F	
	fill in the n values	App for t	the \wedge rule parentheses

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	T
T F		T F	
F T		F T	
F F		F F	
	fill in the n values	App	the \wedge rule parentheses

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	T
T F		T F	F
F T		F T	
F F		F F	
	fill in the n values	App	the \wedge rule parentheses

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	T
T F		T F	F
F T		F T	F
F F		F F	
	fill in the n values	$\begin{aligned} & \text { Apr } \\ & \text { for th } \end{aligned}$	the \wedge rule parentheses

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	T
T F		T F	F
F T		F T	F
F F		F F	F
	fill in the n values	Apply the \wedge rule for the parentheses	

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$
T T		T T	T	T T	T
T F		T F	F	T F	F
F T		F T	F	F T	F
F F		F F	F	F F	F
	fill in the n values	App for th	the \wedge rule parentheses		the \neg rule

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$	P Q	$\neg(P$	$\wedge Q)$
T T		T T	T	T T	F	T
T F		T F	F	T F		F
F T		F T	F	F T		F
F F		F F	F	F F		F
	ill in the n values	Apply the \wedge rule for the parentheses		Apply the \neg rule		

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$	P Q	$\neg(P$	$\wedge Q)$
T T		T T	T	T T	F	T
T F		T F	F	T F	T	F
F T		F T	F	F T	T	F
F F		F F	F	F F		F
	fill in the n values	Apply the \wedge rule for the parentheses		Apply the \neg rule		

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$	P Q	$\neg(P$	$\wedge Q)$
T T		T T	T	T T	F	T
T F		T F	F	T F	T	F
F T		F T	F	F T	T	F
F F		F F	F	F F	T	F
	fill in the n values	Apply the \wedge rule for the parentheses		Apply the \neg rule		

P Q	$\neg(P \wedge Q)$	P Q	$\neg(P \wedge Q)$	P Q		$\wedge Q)$
T T		T T	T	T T	F	T
T F		T F	F	T F	T	F
F T		F T	F	F T	T	F
F F		F F	F	F F	T	F
	fill in the n values	Apply the \wedge rule for the parentheses		Apply the \neg rule		

Agenda

- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

Question 123

Consider the expression " $(P \rightarrow Q) \leftrightarrow(Q \rightarrow P)$ ". This full expression has the same truth value as
A. $\bigcirc P \oplus Q$
B. $P P \vee Q$
C. $\bigcirc P \wedge Q$
D. $P \rightarrow Q$
E. $P \leftrightarrow Q$
F. $P P$
G. $\odot Q$

- Key:

Agenda

- Quiz Friday: practice
- Cartesian Product of 3 or more sets
- Set builder: duplicate elements
- Logical Operator Definitions
- Truth Table Example 1
- Truth Table Example 2
- Truth Table Example 3

What is the truth table for:

$(P \vee Q) \rightarrow(\neg R)$

