Mar 1-3 Slides

Elizabeth Orrico

Good to have in your back pocket:

P—q

“if p, then ¢g” “p implies g~

“if p, q” “ponly if g”

“p 1s sufficient for g” “a sufficient condition for g is p”
gy “g whenever p”

“g when p” “g 1s necessary for p”

“a necessary condition for p 1s g” “g follows from p”

“g unless —p” “q provided that p”

Predicates and First-Order Logic

We can only do so much with atomic
propositions. To say more interesting things, like:

m All files that are larger than 1,000 blocks are to be
moved to backup provided that they have not been
referenced within the last 100 days and that they are
not system files.

We need more.

Predicates and First-Order Logic

We can only do so much with atomic
propositions. To say more interesting things, like:

m All files that are larger than 1,000 blocks are to be
moved to backup provided that they have not been
referenced within the last 100 days and that they are
not system files.

m All system files that are either source code or have
not been referenced with the last 300 days are to be
moved to backup.

m Any user file that is larger than 10,000 blocks is to be
compressed irrespective of the most recent reference
date.

Predicates

[FOL stands for First Order Logic]

https://www.youtube.com/watch?v=r3wQM4vQUT
c&feature=emb_logo

Predicates

“A function that evaluates to True or False”
“A proposition missing the noun(s)”

“A proposition template”

Predicates Example

Determine the predicate and the arguments of the
following:

“Sam loves Diane”

Predicates Example

loves L(x, y)

“Sam loves Diane”
Formalizes to
L(Sam, Diane)

Predicates Example

loves = L(x, y)
X y

“Sam loves Diane” = L(Sam, Diane)
“Diane doesn’t love Sam” = 2?2?77

Predicates Example

loves = L(x,y) H(x)....
X y
“Sam loves Diane” = L(Sam, Diane)
“Diane doesn’t love Sam” = =L(Diane, Sam)

“I Love Lucy” = ??7?7?

Predicates Example

loves = L(x, y)
X y
“Sam loves Diane” = L(Sam, Diane)
“Diane doesn’t love Sam” = =L(Diane, Sam)

“I Love Lucy” = L(me, Lucy)
“Everyone Loves Raymond” = 7?7?77

Predicates Example

loves = L(x, y) VvV = “for all”

X y
Domain: people

“Sam loves Diane” = L(Sam, Diane)

“Diane doesn’t love Sam” = =L(Diane, Sam)

“I Love Lucy” = L(me, Lucy)

“Everybody Loves Raymond” = Vx L(x, Raymond)

Predicates Example

No predicates in predicates
No T/F in arguments

Universal Quantifier (V)

Vv = “for all” or “given any”
It expresses that a propositional function can be satisfied by
every member of the domain

Domain: People L(x, y) = xlovesy

V x L(x, Raymond) means ???

Universal Quantifier (V)

Vv = “for all” or “given any”
It expresses that a propositional function can be satisfied by
every member of the domain.

Domain: People L(x, y) = xlovesy

V x L(x, Raymond) means “For all people x, each one loves Raymond”
“Given any person x, that person loves Raymond”
“Every person loves Raymond”

Predicates Example

loves = L(x, y) VvV = “for all”

X y
Domain: people

“Everybody Loves Raymond” = Vx L(x, Raymond)
“Everybody does not love Chris” = ????

Predicates Example

Domain: People L(x, y) = xlovesy
“Everybody does not love Chris”

How could | rephrase this?

Predicates Example

Domain: People L(x, y) = xlovesy
“Everybody does not love Chris”

How could | rephrase this?
“For all people, each one does not love Chris”
“There does not exist one person who loves Chris”

Predicates Example

Domain: People L(x, y) = xlovesy
“Everybody does not love Chris”
How could | formalize this?
“For all people, each one does not love Chris”
V x 7L(x, Chris)

=V x L(x, Chris) = 22?

Predicates Example

Domain: People L(x, y) = xlovesy
“Everybody does not love Chris”

How could | formalize this?
“For all people, each one does not love Chris”
V x 7L(x, Chris)

Predicates Example

Domain: People L(x,y)= xlovesy 3 = “there exists”
“Everybody does not love Chris”

How could | formalize this?
“There does not exist one person who loves Chris”

Existential Quantifier (3)

3 = "there exists", "there is at least one", or "for some"
It expresses that a propositional function can be satisfied by
at least one member of the domain.

Domain: People L(x, y) = xlovesy

73 x L(x, Chris) means “There does not exist one person who loves Chris”

Existential Quantifier (3)

3 = "there exists", "there is at least one", or "for some"
It expresses that a propositional function can be satisfied by
at least one member of the domain.

Domain: People L(x, y) = xlovesy

73 x L(x, Chris) means “There does not exist one person who loves Chris”

(also see 1)

3 and V

Domain: People L(x, y) = xlovesy

73 x L(x, Chris) means “There does not exist one person who loves Chris”
V x 7L(x, Chris) means “For all people, each one does not love Chris”

73 x L(x, Chris) = VY x 7L(x, Chris)

3 and V

Domain: People L(x, y) = xlovesy

73 x L(x, Chris) means “There does not exist one person who loves Chris”
V x 7L(x, Chris) means “For all people, each one does not love Chris”

73 x L(x, Chris) = VY x 7L(x, Chris)

#[3 x-L(x, Chris) = "V x L(x, Chris) |

Another Example

Is the logical expression
V x. Q(x)
true or false
with
Qx) = (x*=2x)

Another Example

Is the logical expression
V x. Q(x)
true or false
with
Qx) = (x*=2x)
Q(4) = 77?7

Another Example

Is the logical expression
Vx. Q(x)
true or false
with
Q(x) = (x* 2 x)
Q(4) = true
Q(0.5) = 27?7

Another Example

Is the logical expression true or false?

VXEZ.QXx) vs VxER.Q®X)
with

Q(x) = (x* = x)

3 and V

Associate “for all” with AND’s since it becomes false if
just one truth value is false

Associate “there exists” with OR’s since it becomes
true if just one truth value is true

What about more than 1 quantifier:

Domain: People L(x, y) = xlovesy

Are these equivalent?

AyVxL(xy) = Vx3ayL(xy)
?

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = xlovesy
Are these equivalent?

JyVxL(x,y) is not equivalentto Vx3y L(x,y)

Q
Y

Q

; O
7\ O\A\/U/O
o © >

Quick Intro to Multiple Quantifiers:
Domain: People L(x, y) = xlovesy
Are these equivalent?

JyVxL(x,y) is not equivalent to Vx3y L(x,y)

Remember

When you are dealing with mixed quantifiers, the order is very important.
¥x dy R(x.y) is not logically equivalent to Jdy VxR(x.y).

Think about nested loops
Domain: {Ann, Bob, Chris} 3yVxL(x,y)

// since 3 means stuff “or’d” together, start with false
existValue = False
for vy in {Ann, Bob, Chris}:
// since V means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:
univValue = univValue A L(x,VY)
end
existValue = existValue V univValue
end
Return existValue

Think about nested loops

Domain: {Ann, Bob, Chris} 3yVxL(x,y)
How will this code change for “Vx 3y L(x,y)"?

// since 3 means stuff “or’d” together, start with false
existValue = False
for vy in {Ann, Bob, Chris}:
// since V means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:
univValue = univValue A L(x,VY)
end
existValue = existValue V univValue
end
Return existValue

Think about nested loops
Domain: {Ann, Bob, Chris} ¥V x3y L(x,y)

// since V means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:
// since 3 means stuff “or’d” together, start with false
existValue = False
for y in {Ann, Bob, Chris}:
existValue = existValue V L(x,Vy)
end
univvValue = existValue A univValue
end
Return univValue

Think about boolean logic
Domain: {Ann, Bob, Chris} 3yVxL(x,y)

(L(Ann, Ann) A L(Bob, Ann) A L(Chris, Ann))
V (L(Ann, Bob) A L(Bob, Bob) A L(Chris, Bob))
V (L(Ann, Chris) A L(Bob, Chris) A L(Chris, Chris))

Think about boolean logic

Domain: {Ann, Bob, Chris} 3yVxL(x,y)
How will this change for “Vv x 3y L(x,y)"?

(L(Ann, Ann) A L(Bob, Ann) A L(Chris, Ann))
V (L(Ann, Bob) A L(Bob, Bob) A L(Chris, Bob))
V (L(Ann, Chris) A L(Bob, Chris) A L(Chris, Chris))

Think about boolean logic

Domain: {Ann, Bob, Chris} 3y. VX. L(x,y) = 3y(Vx (L(X,y)))
How will this change for “Vvx 3y L(x,y)"?

(L(Ann, Ann) V L(Ann, Bob) V L(Ann, Chris))
A (L(Bob, Ann) V L(Bob, Bob) V L(Bob, Chris))
A (L(Chris, Ann) V L(Chris, Bob) V L(Chris, Chris))

https://www.cs.virginia.edu/luther/2102/S2021/en
g2quant.html

