Mar 15th Slides

Elizabeth Orrico

 What can a function output? Numbers Booleans Vectors Anything and everything String

2. What can be inputs to a function? Same thing as output

3. How can a function be defined? formula/equation Code-- subroutine algorithm

A function assigns an element of one SET to another SET...

A function assigns an element of one SET to another SET...

 $f: A \to B$

Why a SET and not a SEQUENCE?

The notation:

$$f: A \to B$$

indicates that f is a function with domain, A, and codomain, B. The familiar notation "f(a) = b" indicates that f assigns the element $b \in B$ to a specific argument $a \in A$.

Here *b* would be called the value of *f* at argument *a*.

Domain

A function *need not* be defined for every element in its domain. For example, if we consider $f_1(x) : \mathbb{R} \to \mathbb{R}$

 $f_1(x) = 1/x^2$

Domain

A function *need not* be defined for every element in its domain. For example, if we consider $f_1(x) : \mathbb{R} \to \mathbb{R}$

$$f_1(x) = 1/x^2$$

If there are domain elements for which a function is not defined, it is a *partial function*.

Meanwhile, a *total function* ???

A function *need not* be able to return every element of its codomain...

A function *need not* be able to return every element of its codomain...

A function *need not* be able to return every element of its codomain...

A function *need not* be able to return every element of its codomain...

Range \subseteq Codomain

Surjective, onto : Codomain = Range

What does this mean in English?

$\forall b \in B, \exists a \in A, f(a) = b.$

Surjective, onto : Codomain = Range

$$\forall b \in B, \exists a \in A, f(a) = b.$$

Surjective or not surjective? $f_1(x) : \mathbb{R} \to \mathbb{R}$ $f_1(x) = x^2$

Surjective, onto : Codomain = Range

$$\forall b \in B, \exists a \in A, f(a) = b.$$

Surjective or not surjective? $f_1(x) : \mathbb{R} \to [0, \inf)$ $f_1(x) = x^2$

Injective

Every input maps to a different output!

$$\forall x, y \in D. (x \neq y) \rightarrow (f(x) \neq f(y))$$

Is a parabola injective?

Injective

Every input maps to a different output!

$$\forall x, y \in D. (x \neq y) \rightarrow (f(x) \neq f(y))$$

https://www.desmos.com/calculator

Bijective (or invertible or correspondence)

Must be surjective, and injective! (oh my)

Surjective:
$$\forall b \in B, \exists a \in A, f(a) = b$$
.
Injective: $\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)$.
Bijective: $(\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)) \land (\forall b \in B, \exists a \in A, f(a) = b)$.

Injection (One-to-One)

Surjection (Onto)

Bijection (One-to-One and Onto)

A has many B B can have many A B can't have many A Every B has some A A to B, perfectly

Surjective:
$$\forall b \in B, \exists a \in A, f(a) = b$$
.
Injective: $\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)$.
Bijective: $(\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)) \land (\forall b \in B, \exists a \in A, f(a) = b)$.

Surjective:
$$\forall b \in B, \exists a \in A, f(a) = b$$
.
Injective: $\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)$.
Bijective: $(\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)) \land (\forall b \in B, \exists a \in A, f(a) = b)$.

Surjective:
$$\forall b \in B, \exists a \in A, f(a) = b$$
.
Injective: $\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)$.
Bijective: $(\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)) \land (\forall b \in B, \exists a \in A, f(a) = b)$.

Surjective:
$$\forall b \in B, \exists a \in A, f(a) = b$$
.
Injective: $\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)$.
Bijective: $(\forall a_1 \in A, \forall a_2 \in A, (f(a_1) = f(a_2)) \implies (a_1 = a_2)) \land (\forall b \in B, \exists a \in A, f(a) = b)$.

{T, F}^2 =

{ (T, T), (T, F), (F, T), (F, F) }

