Mar 15th Slides

Elizabeth Orrico

What is a Function?

1. What can a function output?

Numbers
Booleans
Vectors
Anything and everything
String
2. What can be inputs to a function?

Same thing as output
3. How can a function be defined?
formula/equation
Code-- subroutine
algorithm

What is a Function?

A function assigns an element of one SET to another SET...

What is a Function?

A function assigns an element of one SET to another SET...

$$
f: A \rightarrow B
$$

Why a SET and not a SEQUENCE?

What is a Function?

The notation:

$$
f: A \rightarrow B
$$

indicates that \boldsymbol{f} is a function with domain, \boldsymbol{A}, and codomain, \boldsymbol{B}. The familiar notation " $\boldsymbol{f}(\boldsymbol{a})=\boldsymbol{b}$ " indicates that f assigns the element $\boldsymbol{b} \in \boldsymbol{B}$ to a specific argument $\boldsymbol{a} \in \boldsymbol{A}$.

Here b would be called the value of f at argument a.

Domain

A function need not be defined for every element in its domain. For example, if we consider $f_{l}(x): \mathbb{R} \rightarrow \mathbb{R}$

$$
f_{1}(x)=1 / x^{2}
$$

Domain

A function need not be defined for every element in its domain. For example, if we consider $f_{l}(x): \mathbb{R} \rightarrow \mathbb{R}$

$$
f_{1}(x)=1 / x^{2}
$$

If there are domain elements for which a function is not defined, it is a partial function.

Meanwhile, a total function ???

Codomain

A function need not be able to return every element of its codomain...

Codomain

A function need not be able to return every element of its codomain...

Domain $=\{1,2,3,4\}$

Codomain

A function need not be able to return every element of its codomain...

Codomain

A function need not be able to return every element of its codomain...


```
Domain={1, 2, 3,4}
Co-domain={1,2,3,4,5,6,7,8}
Range={3,4,5,6}
```

Range \subseteq Codomain

Codomain

Surjective, onto : Codomain = Range
What does this mean in English?

$$
\forall b \in B, \exists a \in A, f(a)=b
$$

Codomain

Surjective, onto : Codomain = Range

$$
\forall b \in B, \exists a \in A, f(a)=b
$$

Surjective or not surjective?

$$
\begin{aligned}
& f_{I}(x): \mathbb{R} \rightarrow \mathbb{R} \\
& f_{I}(x)=x^{2}
\end{aligned}
$$

Codomain

Surjective, onto : Codomain = Range

$$
\forall b \in B, \exists a \in A, f(a)=b
$$

Surjective or not surjective?

$$
\begin{aligned}
& f_{I}(x): \mathbb{R} \rightarrow[0, \text { inf }) \\
& f_{I}(x)=x^{2}
\end{aligned}
$$

Injective

Every input maps to a different output!

$$
\forall x, y \in D .(x \neq y) \rightarrow(f(x) \neq f(y))
$$

Is a parabola injective?

Injective

Every input maps to a different output!
$\forall x, y \in D .(x \neq y) \rightarrow(f(x) \neq f(y))$
https://www.desmos.com/calculator

Bijective (or invertible or correspondence)

Must be surjective, and injective! (oh my)

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right) \cdot\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.)

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right) \cdot\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Injection (One-to-One)

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Surjection (Onto)

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

Bijection (One-to-One and Onto)

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

A has many B

B can have many $A \quad B$ can't have many $A \quad$ Every B has some $A \quad A$ to B, perfectly

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

NOT a
Function

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

NOT a
Function

General
Function

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

NOT a
Function
A has many B

General
Function

Injective
(not surjective)

B can't have many A Every B has some $A \quad A$ to B, perfectly

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

NOT a
Function
A has many B

General
Function
B can have many A

Injective
(not surjective)

Surjective (not injective)
B can't have many A Every B has some A

A to B, perfectly

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

NOT a
Function

General
Function
B can have many A

Injective
(not surjective)

Surjective (not injective)

Every B has some A

Bijective
(injective, surjective) A to B, perfectly

Surjective: $\forall b \in B, \exists a \in A, f(a)=b$.
Injective: $\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right)$.
Bijective: $\left(\forall a_{1} \in A, \forall a_{2} \in A,\left(f\left(a_{1}\right)=f\left(a_{2}\right)\right) \Longrightarrow\left(a_{1}=a_{2}\right).\right) \wedge(\forall b \in B, \exists a \in A, f(a)=b$.

$\{T, F\}^{\wedge} 2=$

$$
\{(T, T),(T, F),(F, T),(F, F)\}
$$

