Mar 31 Slides

Elizabeth Orrico

Agenda

Quiz Notes

Proof by Contradiction-- Longer Example 1

Proof by Contradiction-- Longer Example 2

Paper and Autograded Quiz

- Proof by contradiction: only 30 minutes to write
- Prime and relatively prime numbers
- Prime factorization and Fundamental Theorem of Algebra
- GCD

Proof by contradiction

Theorem: A is true.
We proceed by contradiction.
Assume Not A to prove this

Not A proves FALSE
Therein lies the contradiction.
Therefore
A is true.

Often how we prove something is impossible in computing

Proof by Contradiction

Proof by contradiction

Theorem: A is true.
We proceed by contradiction.
Assume Not A to prove this

Not A proves FALSE
Therein lies the contradiction.
Therefore
A is true.

Often how we prove something is impossible in computing

Proof by contradiction

$$
\text { Prove } \sqrt[2]{2} \sqrt[3]{3} \text { is not a rational number }
$$

Proof by contradiction

$$
\text { Prove } \sqrt[2]{2} \sqrt[3]{3} \text { is not a rational number }
$$

We proceed by contradiction:

Proof by contradiction

$$
\text { Prove } \sqrt[2]{2} \sqrt[3]{3} \text { is not a rational number }
$$

We proceed by contradiction:
Suppose that $\sqrt[2]{2} \sqrt[3]{3}$ is a rational number.

Proof by contradiction

Prove $\sqrt[2]{2} \sqrt[3]{3}$ is not a rational number

We proceed by contradiction:
Suppose that $\sqrt[2]{2} \sqrt[3]{3}$ is a rational number.

By the definition of rational numbers:

$$
x \in \mathbb{Q} \text { iff } x=\frac{a}{b} \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{Z}
$$

Proof by contradiction

Prove $\sqrt[2]{2} \sqrt[3]{3}$ is not a rational number

We proceed by contradiction:
Suppose that $\sqrt[2]{2} \sqrt[3]{3}$ is a rational number.

By the definition of rational numbers:

$$
x \in \mathbb{Q} \text { iff } x=\frac{a}{b} \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{Z}
$$

So $\sqrt[2]{2} \sqrt[3]{3}$ can be expressed as a fraction
of 2 integers.

Proof by contradiction

What next?

Proof by contradiction

What next?

First idea: Square both sides, to get:

$$
2 \sqrt[3]{3}=\frac{a^{2}}{b^{2}}
$$

Proof by contradiction

Second idea: Raise both sides to the 6th

 power.$$
(\sqrt[2]{2} \sqrt[3]{3})^{6}=\left(\frac{a}{b}\right)^{6}=2^{3} 3^{2}=72
$$

Proof by contradiction

Second idea: Raise both sides to the 6th

 power.$$
(\sqrt[2]{2} \sqrt[3]{3})^{6}=\left(\frac{a}{b}\right)^{6}=2^{3} 3^{2}=72
$$

By algebra, we get:

$$
a^{6}=72 b^{6}
$$

Proof by contradiction

Third Idea: Keep in prime factor form. $a^{6}=2^{3} 3^{2} b^{6}$

Proof by contradiction

Third Idea: Keep in prime factor form. $a^{6}=2^{3} 3^{2} b^{6}$

Now, we know that $a^{6}=2^{3} 3^{2} b$ must have an odd multiplicity of 2's in a^{6} 's prime factorization.

Proof by contradiction

But this is impossible because a number raised to an even power (6) must have even multiplicities of all its factors.

Proof by contradiction

But this is impossible because a number raised to an even power (6) must have even multiplicities of all its factors.

Therefore, assuming $\sqrt[2]{2} \sqrt[3]{3}$ is a rational number led to a contradiction, we have proven that $\sqrt[2]{2} \sqrt[3]{3}$ is not a rational number. ■

Proof by contradiction

Proof by contradiction

$$
\text { Prove } \frac{1+\sqrt{5}}{2} \text { is not a rational number }
$$

Proof by contradiction

$$
\text { Prove } \frac{1+\sqrt{5}}{2} \text { is not a rational number }
$$

We proceed by contradiction:

Proof by contradiction

$$
\text { Prove } \frac{1+\sqrt{5}}{2} \text { is not a rational number }
$$

We proceed by contradiction:
Suppose that $\frac{1+\sqrt{5}}{2}$ is a rational number.

Proof by contradiction

$$
\text { Prove } \frac{1+\sqrt{5}}{2} \text { is not a rational number }
$$

We proceed by contradiction:
Suppose that $\frac{1+\sqrt{5}}{2}$ is a rational number.

By the definition of rational numbers:

Proof by contradiction

Prove $\frac{1+\sqrt{5}}{2}$ is not a rational number

We proceed by contradiction:
Suppose that $\frac{1+\sqrt{5}}{2}$ is a rational number.

By the definition of rational numbers:

$$
x \in \mathbb{Q} \text { iff } x=\frac{a}{b} \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{Z}
$$

Proof by contradiction

Prove $\frac{1+\sqrt{5}}{2}$ is not a rational number

We proceed by contradiction:
Suppose that $\frac{1+\sqrt{5}}{2}$ is a rational number.

By the definition of rational numbers:

$$
x \in \mathbb{Q} \text { iff } x=\frac{a}{b} \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{Z}
$$

So $\frac{1+\sqrt{5}}{2}$ can be expressed as a fraction of
2 integers.

Proof by contradiction

$$
\text { Prove } \frac{1+\sqrt{5}}{2} \text { is not a rational number }
$$

We proceed by contradiction:
Suppose that $\frac{1+\sqrt{5}}{2}$ is a rational number.

By the definition of rational numbers:

$$
x \in \mathbb{Q} \text { iff } x=\frac{a}{b} \text { where } a \in \mathbb{Z} \text { and } b \in \mathbb{Z}
$$

So $\frac{1+\sqrt{5}}{2}$ can be expressed as a fraction of
2 integers.

Proof by contradiction

By arithmetic, $\frac{1+\sqrt{5}}{2}$ can be broken up into two fractions:

$$
\frac{1}{2}+\frac{\sqrt{5}}{2}
$$

Proof by contradiction

By arithmetic, $\frac{1+\sqrt{5}}{2}$ can be broken up into two fractions:

$$
\frac{1}{2}+\frac{\sqrt{5}}{2}
$$

By observation, the first fraction, $\frac{1}{2}$, is a rational number, since $1=\mathrm{a}$ and $2=\mathrm{b}$.

Proof by contradiction

Since we know that adding an irrational number to a rational number will result in an irrational number, we can now focus on
determining if the second fraction, $\frac{\sqrt{5}}{2}$, is rational.

Proof by contradiction

$\frac{\sqrt{5}}{2}$ can be expressed as a fraction of 2 integers if it is rational:

$$
\frac{\sqrt{5}}{2}=\frac{a}{b}
$$

Proof by contradiction

$\frac{\sqrt{5}}{2}$ can be expressed as a fraction of 2 integers if it is rational:

$$
\frac{\sqrt{2}}{2}
$$

Squaring both sides, we get:

$$
\frac{5}{4}=\frac{a^{2}}{b^{2}}
$$

Proof by contradiction

$\frac{\sqrt{5}}{2}$ can be expressed as a fraction of 2 integers if it is rational:

$$
\frac{1}{2}-8
$$

Squaring both sides, we get:

$$
\frac{5}{4}=\frac{a^{2}}{b^{2}}
$$

By algebra, $5 b^{2}=2^{2} a^{2}$

Proof by contradiction

Now, we know that $5 b^{2}=2^{2} a^{2}$ must have the same prime factorization by the fundamental theorem of algebra. So, we must have an odd multiplicity of 5's in $2^{2} a^{2}$ s prime factorization.

Proof by contradiction

Now, we know that $5 b^{2}=2^{2} a^{2}$ must have the same prime factorization by the fundamental theorem of algebra. So, we must have an odd multiplicity of 5's in $2^{2} a^{2}$ s prime factorization.

But this is impossible because a number raised to an even power (2) must have even multiplicities of all its factors.

Proof by contradiction

Therefore, assuming $\frac{1+\sqrt{5}}{2}$ is a rational number led to a contradiction, and we have proven that $\frac{1+\sqrt{5}}{2}$ is not a rational number. \quad

Paper and Autograded Quiz

- Proof by contradiction: only 30 minutes to write
- Prime and relatively prime numbers
- Prime factorization and Fundamental Theorem of Algebra
- GCD

