Nov 4th Slides

Elizabeth Orrico

CS CARERR URPDOATION PANE:

Thurs, Nov $5^{\text {th }} \&$ Nov $12^{\text {th }}$ 7-8 PM EST Nov $5^{\text {th }}$ Nov $12^{\text {th }}$

Mobile App Dev
Back-end
Product Management
Data Science

Grad School Video Game Dev Cybersecurity

Sets vs Sequences

Both can:

-Contain anything
-Can have a sequence of sequences, set of sets, sequence of sets, etc
-Cannot be modified

Sets:

-no duplicates
-no order
-has cardinality

Sequences:

-can have duplicates
-has order
-has length
Lists, Arrays, Ordered pairs, Tuples, etc!

Cartesian Product of Sets

Ordered Pair: An ordered pair is a pair of objects where one element is designated first and the other element is designated second, denoted (a, b). (is an example of a sequence with 2 elements)

Cartesian Product: The Cartesian product of two sets A and B, denoted $\mathrm{A} \times \mathrm{B}$, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second.

In set-builder notation, $A \times B=\{(a, b): a \in A$ and $b \in B\}$.

Cartesian Product of Sets

$$
\begin{gathered}
\{1,2\} \times\{3,4,5\} \\
=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}
\end{gathered}
$$

Cartesian Product of Sets

$$
\begin{gathered}
|\{1,2\} \times\{3,4,5\}| \\
=|\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}| \\
=6
\end{gathered}
$$

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\}$?

Cartesian Product of Sets

Your Turn: What is $\{1,2\} \times\{2,3\}$?
Answer: $\{(1,2),(1,3),(2,2),(2,3)\}$

Cartesian Product of Sets

$\mathbb{R} \times \mathbb{R}:$ The coordinate plane

Characters

Letters of an alphabet: abcdefghijklmnopqrstuvwxyz

When characters are in a sequence, we call it a string

$$
(a, b)=>a b
$$

Kleene Star *

Counting Character and Number Combinations

Imagine a state that requires default license plates to have 3 characters followed by 4 numbers:

How many possible plates?

How many possible plates?
$\boldsymbol{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$ $\boldsymbol{D}=\{0,1,2,3,4,5,6,7,8,9\}$

$\boldsymbol{L} \times \boldsymbol{L} \times \boldsymbol{L} \times \boldsymbol{D} \times \boldsymbol{D} \times \boldsymbol{D} \times \boldsymbol{D}=$ Set of every plate

How many possible plates?
$\boldsymbol{L}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$ $\boldsymbol{D}=\{0,1,2,3,4,5,6,7,8,9\}$

$\boldsymbol{L} \times \boldsymbol{L} \times \boldsymbol{L} \times \boldsymbol{D} \times \boldsymbol{D} \times \boldsymbol{D} \times \boldsymbol{D}=$ Set ev'ry plate seq $26 \times 26 \times 26 \times 10 \times 10 \times 10 \times 10=\#$ of possible plates

$$
=175,760,000
$$

How many sequences of digits of length 4 ?

$$
_^{\times}{ }^{\times} \times{ }^{\times}=
$$

How many sequences of digits of length 4 ?

$$
\overline{10} \times \overline{10} \times \overline{10} \times \overline{10}=
$$

How many sequences of digits of length 4 ?

$$
\overline{10} \times \overline{10} \times \overline{10} \times \overline{10}=\overline{10,000}
$$

(Numbers 0-9,999: makes sense)

How many sequences of digits of length 4 with no repeats?

$$
\sim^{\times} \times \ldots \times
$$

How many sequences of digits of length 4

 with no repeats?$$
-10 \times 9 \times \times \times \times \overline{\times}=\overline{5,040}
$$

Side-note: Product Notation and Factorials

$$
\prod_{i=1}^{6} i^{2}=(1)(4)(9)(16)(25)(36)
$$

Side-note: Product Notation and Factorials

$$
\begin{gathered}
\prod_{i=1}^{6} i^{2}=(1)(4)(9)(16)(25)(36) \\
\prod_{i=1}^{5} i=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5!
\end{gathered}
$$

How can we represent $10 \times 9 \times 8 \times 7$ as Factorials?
$\prod_{i=1}^{5} i=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5!$

How can we represent $10 \times 9 \times 8 \times 7$ as Factorials?

$$
\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=
$$

$$
\prod_{i=1}^{5} i=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5!
$$

How can we represent $10 \times 9 \times 8 \times 7$ as Factorials?

$$
\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=\frac{10!}{6!}=\frac{10!}{(10-4)!}
$$

$$
\prod_{i=1}^{5} i=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5!
$$

COUNTING

\boldsymbol{n} options for \boldsymbol{k} positions
n^{k} : All possible sequences
$\frac{n!}{(n-k)!}$: All possible permutations
$\frac{n!}{k!(n-k)!}$: All possible combinations (SETS)

Permutation: A shuffling, re-ordering of sequence

$$
{ }^{n} P_{k}=\frac{n!}{(n-k)!}
$$

We're just looking at how many sequences with unique elements (order matters)

For an individual permutation, we've settled on the k elements and the ordering we want to include.

For an individual permutation, we've settled on the k elements and the ordering we want to include.

How could we remove these shufflings, so we're just looking at how many sets with unique elements?

For an individual permutation, we've settled on the k elements and the ordering we want to include.

How could we remove these shufflings, so we're just looking at how many sets with unique elements?

How many permutations of the same k elements are possible?

For an individual permutation, we've settled on the k elements and the ordering we want to include.

How could we remove these shufflings, so we're just looking at how many sets with unique elements?

How many permutations of the same k elements are possible?
ie, for $\mathrm{k}=2:(1,2),(2,1)$

Example: How many orderings of 4 elements (5, 8, $1,3)$ are there?

Example: How many orderings of 4 elements (5, 8, $1,3)$ are there?

Example: How many orderings of 4 elements (5, 8, $1,3)$ are there?

$$
4 \times 3 \times 2 \times 1 \quad \text { or } k!
$$

Example: How many orderings of 4 elements (5, 8, $1,3)$ are there?
\qquad , \qquad , \qquad ,
$4 \times 3 \times 2 \times 1$ or $k!$

So, to remove all the different orderings counted, divide the permutations-- by k !

Combinations: How many possible sets (no repeats, order doesn't matter)

$$
\binom{\mathrm{n}}{\mathrm{k}}=\bigodot_{\mathrm{k}}^{\mathrm{n}}={ }_{\mathrm{n}} \int_{\mathrm{k}}
$$

"n choose $k "$

Question 18: How many sequences are there with Exactly 8 characters taken from the 26 lower-case ASCII letters and 10 ASCII digits, with no characters repeated twice back-to-back (i.e., abadaeag is OK but abcddefg is not)
What's the number of options? $\mathbf{n}=\mathbf{3 6}$
What's the number of positions? $\mathbf{k}=\mathbf{8}$

$$
\left(\underset{36 \times 1}{\left(\underset{35}{4} \times \frac{1}{35 \ldots \ldots .}\right)=36^{*} 35^{\wedge} 7}\right.
$$

$10^{\wedge} 4=10,000$
5,040
$10!/((10-4)!* 4!)=210$

Question 19: Exactly 8 characters taken from the 26 lower-case ASCII letters and 10 ASCII digits, with no repeated characters (i.e., neither abcdaefg nor abcddefg are OK)

$$
36!/(36-8)!
$$

Ask to solve: Are there repeats allowed? Do we count different orderings with the same options (permutations)?

Question 29: How many 21-element subsets of a

 31-element set are there?$$
\begin{aligned}
& \mathrm{n}=31 \\
& \mathrm{k}=21
\end{aligned}
$$

N choose $\mathrm{k}=$ combination $->31!/(31-21)!* 21!)$
Ask to solve: Are there repeats allowed? Do we count different orderings with the same options (permutations)?

Question 29: How many 21-element subsets of a 31-element set are there?

Ask to solve: Are there repeats allowed? Do we count different orderings with the same options (permutations)?

