Nov 9th Slides

Elizabeth Orrico

1. What can a function output?

Numbers

Booleans

Vectors

Anything and everything

String

2. What can be inputs to a function?

Same thing as output

3. How can a function be defined?

formula/equation Code-- subroutine algorithm

A function assigns an element of one SET to another SET...

A function assigns an element of one SET to another SET...

$$f:A\to B$$

Why a SET and not a SEQUENCE?

The notation:

$$f:A\to B$$

indicates that f is a function with domain, A, and codomain, B. The familiar notation "f(a) = b" indicates that f assigns the element $b \in B$ to a specific argument $a \in A$.

Here b would be called the value of f at argument a.

Domain

A function *need not* be defined for every element in its domain.

For example, if we consider $f_1(x) : \mathbb{R} \to \mathbb{R}$

$$f_1(x) = 1/x^2$$

Domain

A function *need not* be defined for every element in its domain. For example, if we consider $f_1(x) : \mathbb{R} \to \mathbb{R}$

$$f_1(x) = 1/x^2$$

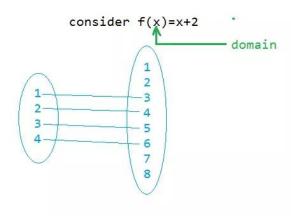
If there are domain elements for which a function is not defined, it is a *partial function*.

$$f_I(x) : \mathbb{R} \to [0,\inf)$$

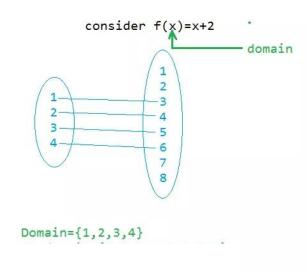
$$f_I(x) = x^2$$

Meanwhile, a total function ???

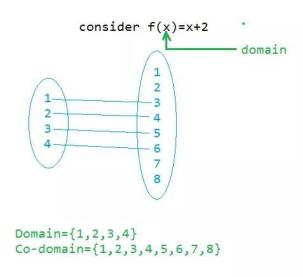
A function *need not* be able to return every element of its codomain...



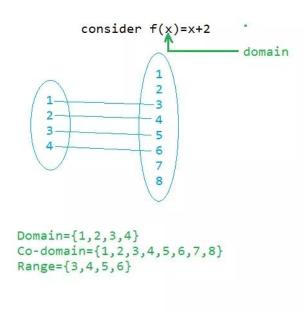
A function *need not* be able to return every element of its codomain...



A function *need not* be able to return every element of its codomain...



A function *need not* be able to return every element of its codomain...



Range \subseteq Codomain

Surjective, onto : Codomain = Range

Kind of the "reverse" of "total"

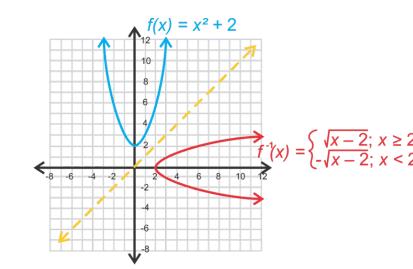
$$\forall b \in B, \ \exists a \in A, \ f(a) = b.$$

Injective

Every input maps to a different output!

$$\forall x, y \in D : (x \neq y) \rightarrow (f(x) \neq f(y))$$

think parabola NOT INJECTIVE



Bijective (or invertible or correspondence)

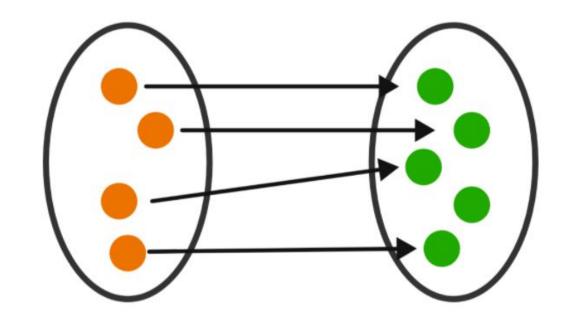
Must be total, and surjective, and injective! (oh my)

```
Surjective: \forall b \in B, \ \exists a \in A, \ f(a) = b.
```

Injective:
$$\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$$

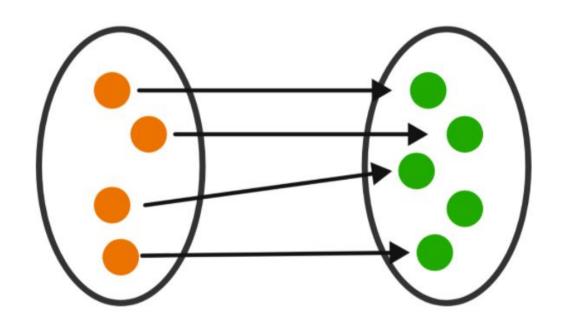
Bijective:
$$(\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).) \land (\forall b \in B, \ \exists a \in A, \ f(a) = b.)$$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$ Bijective: $(\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).) \land (\forall b \in B, \ \exists a \in A, \ f(a) = b.)$



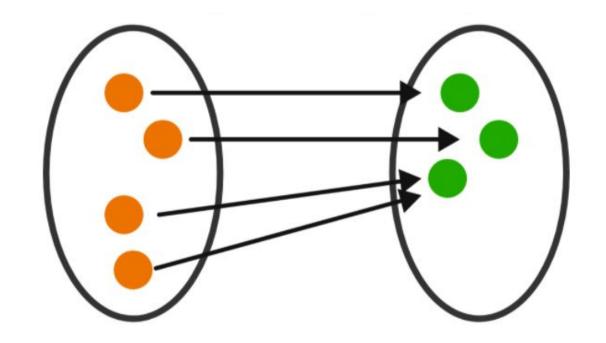
Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Injection (One-to-One)



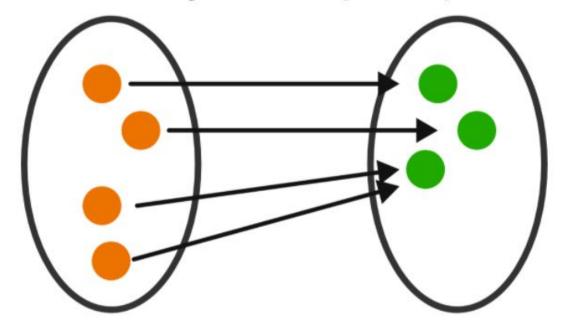
Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$



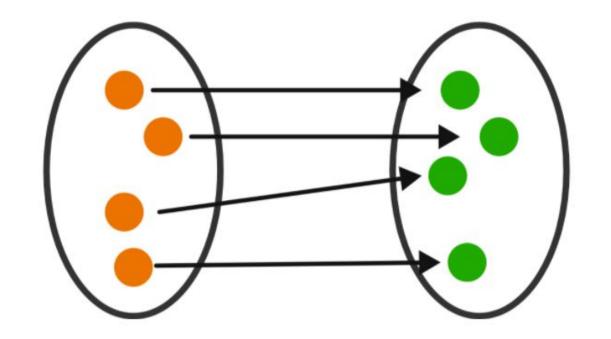
Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Surjection (Onto)



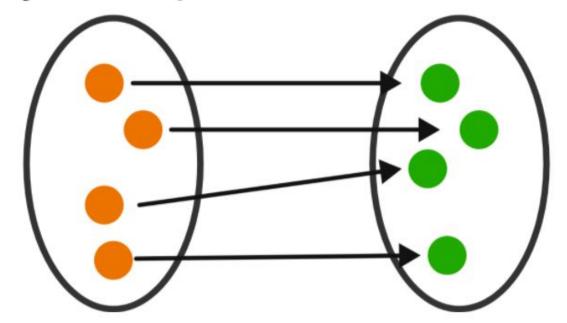
Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$



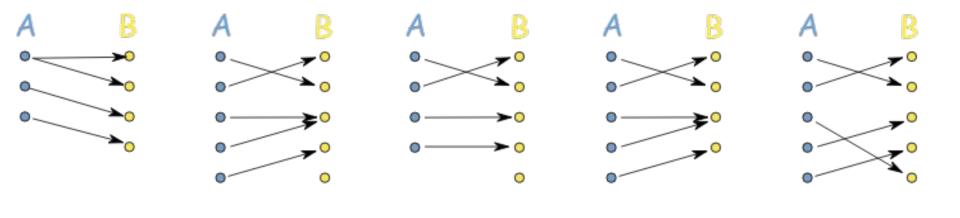
Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Bijection (One-to-One and Onto)



Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$

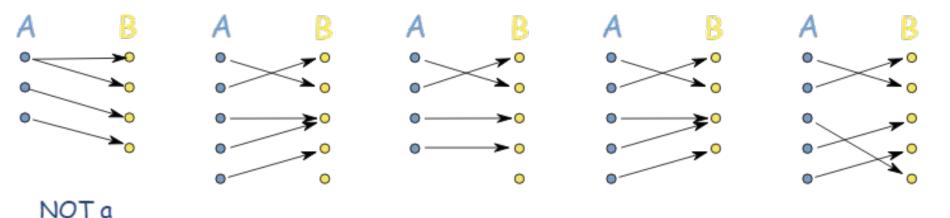
Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$



A has many B B can have many A B can't have many A Every B has some A A to B, perfectly

Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

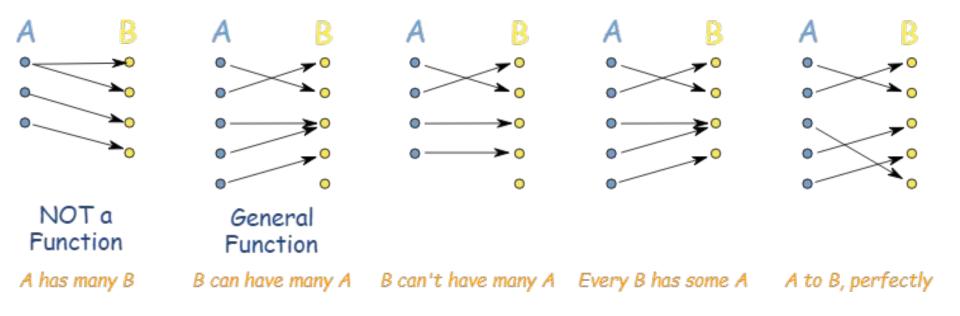


Function

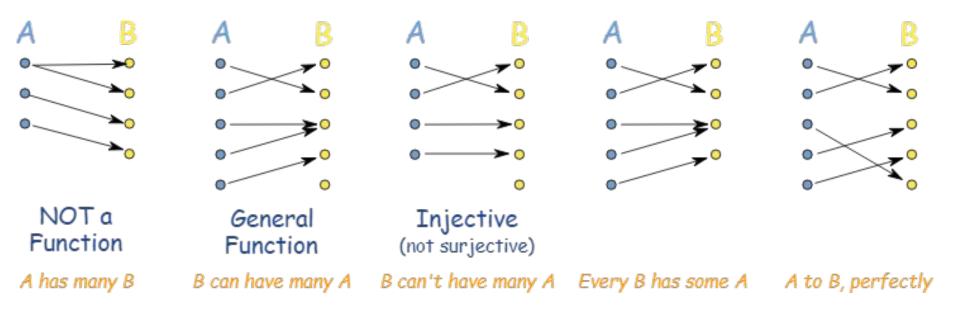
A has many B B can have many A B can't have many A Every B has some A A to B, perfectly

Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$



Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$



Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Surjective: $\forall b \in B, \ \exists a \in A, \ f(a) = b.$ Injective: $\forall a_1 \in A, \ \forall a_2 \in A, \ (f(a_1) = f(a_2)) \implies (a_1 = a_2).$

Definition 4.4.2. A binary relation, R, is:

- a function when it has the $[\le 1 \text{ arrow out}]$ property.
- *surjective* when it has the $[\ge 1 \text{ arrows in}]$ property. That is, every point in the righthand, codomain column has at least one arrow pointing to it.
- *total* when it has the $[\ge 1 \text{ arrows } \mathbf{out}]$ property.
- *injective* when it has the $[\le 1 \text{ arrow in}]$ property.
- bijective when it has both the [= 1 arrow out] and the [= 1 arrow in] property.

