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Proof by contradiction
Theorem: Not A

We proceed by contradiction.

Assume A is true

...

A            proves          FALSE

Therein lies the contradiction.

Therefore

Not A

Often how we prove something is impossible in computing



Rational Numbers -- ℚ
Represented by ℚ, which stands for quotient

That’s because all rational numbers can be represented by a quotient of two 
integers! aka an improper (or proper) fraction…

    x ∈ ℚ iff x =         where a ∈ ℤ  and b ∈ ℤ+ 



Proof by Contradiction -- ℚ

Prove by contradiction that √2 is not a rational number.



Proof by Contradiction -- ℚ
Prove by contradiction that √2 is not a rational number.

We will proceed by contradiction.

Assume that √2 is a rational number. Then, √2 can be expressed as a fraction  n/d  where n ∈ ℤ  and 
d ∈ ℤ+. 

Squaring both sides gives 2=n2/d2 and so 2d2=n2

By the fundamental theorem of arithmetic, the prime factorization of 2d2 and n2 must be equal. 
The term 2d2 must include the factor 2 with an odd multiplicity. However, all the prime factors 
of n2 must have an even multiplicity (ie, all the factors of n twice). Therein lies the contradiction.

Therefore, √2 is not a rational number. ∎



Well-Ordering Principle

“Every nonempty set of nonnegative integers has a smallest element.”
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Well-Ordering Principle

“Every nonempty set of nonnegative integers has a smallest element.”

 ∀A ⊆ ℕ. ∃x ∈ A. x is the smallest.



Well-Ordering Principle

“Every nonempty set of natural numbers has a smallest element.”

 ∀A ⊆ ℕ. ∃x ∈ A. x is the smallest.

Seems obvious but useful in proofs yet to come!



Prove that all the natural numbers are finite
We will proceed by contradiction.



Prove that all the natural numbers are finite
We will proceed by contradiction.

Assume that some natural numbers are infinite.

Let F ⊆ ℕ be the all of the infinite natural numbers. By our assumption, |F| > 0. 

By the well-ordering principle, there exists a smallest infinite number, x ∈ F. Then, let’s create 
a new variable that is x subtract 1,  z = x-2 = y-1. Since y is smaller than x, this means that y is 
finite. 

However, subtracting 1 from an infinite number results in another infinite number, meaning x-1 
= y cannot be finite. Therein lies the contradiction.

Therefore, all the natural numbers are finite.



Prove that the cardinality of natural numbers is infinite.

We will proceed by contradiction.

Assume that the cardinality of the natural numbers is finite (not infinite).

Consider the greatest element of ℕ, called x.

Let y = x+1.

Because adding two natural numbers results in a natural number, y ∈ ℕ that is greater than x. 
However, x was the largest natural number. Therein lies the contradiction.

Therefore, there are an infinite number of natural numbers.



Prove that there are an infinite number of natural numbers.

An infinite-sized set of finite values:  important in Theory of Computation.



More practice: 

Website practice

Textbook Chapter 2.


