Oct 26th Slides

Elizabeth Orrico

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add? 7 Consider just the 3rd person: how many more handshakes did they add?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add? 7 Consider just the 3rd person: how many more handshakes did they add?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add? 7 Consider just the 3rd person: how many more handshakes did they add? 6

A pattern!

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add? 7 Consider just the 3rd person: how many more handshakes did they add? 6

A pattern!
$8+7+6+5+4+3+2+1=$

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Consider just the 1st person: how many people did they shake hands with? 8 Consider just the 2nd person: how many more handshakes did they add? 7 Consider just the 3rd person: how many more handshakes did they add? 6

A pattern!

$$
8+7+6+5+4+3+2+1=36
$$

Problem

What if the room had 20 people? 100 people? 1000 people?
Representing and solving becomes tedious math.

Problem

What if the room had 20 people? 100 people? 1000 people?
Representing and solving becomes tedious math. (more on solving later)

Problem

What if the room had 20 people? 100 people? 1000 people?
Representing and solving becomes tedious math. (more on solving later)
To represent adding a sequence of numbers together, we can often use summation notation.

Problem

To represent adding a sequence of numbers together, we can often use summation notation.

$$
\sum_{i=1}^{n} 2 i
$$

Problem

To represent adding a sequence of numbers together, we can often use summation notation.

Problem

To represent adding a sequence of numbers together, we can often use summation notation.

3
$\sum 2 i=2(1)+2(2)+2(3)$

Your turn

To represent adding a sequence of numbers together, we can often use summation notation.

$$
\sum_{i=2}^{4} 3 i=? ? ?
$$

Problem

The second way to what we're summing over is to give a set

Problem

We can switch between the upper and lower limits and sets as follows:

$$
\begin{gathered}
\sum_{i=2}^{5} 3 i=\sum_{i \in A} 3 i \\
A=\{x \in \mathbb{Z} \mid(x \geq 2) \wedge(x \leq 5)\}
\end{gathered}
$$

Your turn

Given this definition of upper and lower limits, what could this be?

$$
\sum_{i=2}^{1} 3 i=? ? ?
$$

Your turn

Given this definition of upper and lower limits, what could this be?

$$
\begin{aligned}
& \sum_{i=2}^{1} 3 i=? ? ? \\
& \{i \in \mathbb{Z} \mid(i \geq 2) \wedge(i \leq 1)\}
\end{aligned}
$$

Your turn

The second way to what we're summing over is to give a set

$$
\begin{aligned}
& \sum_{i=2}^{1} 3 i=0 \\
& \{i \in \mathbb{Z} \mid(i \geq 2) \wedge(i \leq 1)\}
\end{aligned}
$$

Your turn

What about....?

$$
\sum_{i=2}^{2} 3 i=? ? ?
$$

Your turn

What about....?

$$
\begin{gathered}
\sum_{i=2}^{2} 3 i=? ? ? \\
\{i \in \mathbb{Z} \mid(i \geq 2) \wedge(i \leq 2)\}=\{2\}
\end{gathered}
$$

Your turn

What about....?

$$
\begin{gathered}
\sum_{i=2}^{2} 3 i=3(2)=6 \\
\text { Where } \\
\{i \in \mathbb{Z} \mid(i \geq 2) \wedge(i \leq 2)\}=\{2\}
\end{gathered}
$$

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

How would we express this problem as a summation?

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

How would we express this problem as a summation?
Remember, answer was $8+7+\ldots+2+1$

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

How would we express this problem as a summation?
Remember, answer was $8+7 \ldots+2+1$

$$
\sum_{i=1}^{9-1} i=\sum_{i=1}^{8} i
$$

Problem

\boldsymbol{n} people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

How would we express this problem as a summation?
Remember, answer was (n-1)+(n-2)... $+2+1$

$$
\sum_{i=1}^{n-1} i
$$

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers"

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true
Inductive Step:
Assume $\mathrm{P}(\mathrm{x}-1)$ is true
$P(x-1)$ can be used to show $P(x)$ is true

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true
Inductive Step:
Assume $\mathrm{P}(\mathrm{x}-1)$
$P(x-1)$ can be used to show $P(x)$ is true
By the principle of induction, $P(x)$ is true for all the natural numbers.

Problem:

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $\mathrm{n}=0$ is 0 .

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $\mathrm{n}=0$ is 0 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}=(\mathrm{x}-1)=2(\mathrm{x}-1)$.

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $\mathrm{n}=0$ is 0 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}=(\mathrm{x}-1)=2(\mathrm{x}-1)$.
Then, considering $\mathrm{n}=\mathrm{x}$ will add one more term to the sum:
Just another 2.

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $\mathrm{n}=0$ is 0 .

Inductive Step:

Assume summation evaluated at $n=(x-1)=2(x-1)$.
Then, considering $n=x$ will add one more term to the sum:
Just another 2. Doing some math, we get:
$2(x-1)+2=2 x-2+2=2 x$. This proves the case $n=x$ for some arbitrary x.

Prove this by induction

$$
\sum_{i=0}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $\mathrm{n}=0$ is 0 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}=(\mathrm{x}-1)=2(\mathrm{x}-1)$.
Then, considering $\mathrm{n}=\mathrm{x}$ will add one more term to the sum:
Just another 2. Doing some math, we get:
$2(\mathrm{x}-1)+2=2 \mathrm{x}-2+2=2 \mathrm{x}$. This proves the case $n=x$ for some arbitrary x.
By induction on n, we have proven that this summation is equal to $2 \boldsymbol{n}$ for any value of n in the natural numbers.

Problem:

How many handshakes? Prove this by induction

$$
\sum_{0}^{n-1} i=\frac{n(n-1)}{2}
$$

Prove this by induction

Base Case:

$$
\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}
$$

This summation evaluated when $\mathbf{n}=\mathbf{1}$ is 0 .
Inductive Step:
Assume summation evaluated at $\boldsymbol{n}=\boldsymbol{x}$ will be equal to $(\mathrm{x})(\mathrm{x}-1) / 2$.
Then, considering $\boldsymbol{n}=\boldsymbol{x}+\boldsymbol{1}$ will add one more term to the sum: An
additional $\boldsymbol{x}+1$.
Doing some math, we get:
$(x)(x-1) / 2+x+1=\left(\mathrm{x}^{2}-\mathrm{x}+2 \mathrm{x}+2\right) / 2=\left(\mathrm{x}^{2}+\mathrm{x}+2\right) / 2$ which factors to $(x+1)(x+2) / 2$. This proves that if the summation holds for the case of $n=x$, then it will also hold for the case $n=x+1$ for some arbitrary x.

By induction on \mathbf{n}, we have proven that this summation is equal to $\boldsymbol{2} \boldsymbol{n}$ for any value of \boldsymbol{n} in the natural numbers.

