Oct 28th Slides

Elizabeth Orrico

Problem

9 people are in a room. Each person shakes hands with each other person in the room. How many handshakes occurred total?

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers"

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true
Inductive Step:
Assume $\mathrm{P}(\mathrm{x}-1)$ is true
$P(x-1)$ can be used to show $P(x)$ is true

Proof by Induction

Structure:
Thm: " $P(x)$ is true for all the natural numbers" Base Case:
$P(0)$ is true
Inductive Step:
Assume $\mathrm{P}(\mathrm{x}-1)$
$P(x-1)$ can be used to show $P(x)$ is true
By the principle of induction, $P(x)$ is true for all the natural numbers.

Problem:

Prove for \mathbf{n} equal to all positive integers:

$$
\sum_{i=1}^{n} 2=2 n
$$

Prove for n equal to all positive integers:

$$
\sum_{i=1}^{n} 2=2 n
$$

Base Case:
This summation evaluated when $n=1$ is 2 .

Prove for n equal to all positive integers:

$$
\sum_{i=1}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $n=1$ is 2 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}-1$ will result in $2(\mathrm{n}-1)$.

Prove for n equal to all positive integers:

$$
\sum_{i=1}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $n=1$ is 2 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}-1$ will result in $2(\mathrm{n}-1)$.
Then, considering n will add one more term to the left-hand Summation: Just another 2.

Prove for n equal to all positive integers:

$$
\sum_{i=1}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $n=1$ is 2 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}-1$ will result in $2(\mathrm{n}-1)$. Then, considering n will add one more term to the left-hand Summation: Just another 2. Add this 2 to the right hand-side gives us: $2(\mathrm{n}-1)+2=2 \mathrm{n}-2+2=2 \mathrm{n}$. This proves that if the theorem holds for some arbitrary $n-1$, then it also must hold for n.

Prove for \mathbf{n} equal to any positive integer:

$$
\sum_{i=1}^{n} 2=2 n
$$

Base Case:

This summation evaluated when $n=1$ is 2 .

Inductive Step:

Assume summation evaluated at $\mathrm{n}-1$ will result in $2(\mathrm{n}-1)$.
Then, considering n will add one more term to the left-hand
Summation: Just another 2. Add this 2 to the right
hand-side gives us: $2(\mathrm{n}-1)+2=2 \mathrm{n}-2+2=2 \mathrm{n}$. This proves that if the theorem holds for some arbitrary $n-1$, then it also must hold for n.
By induction on n, we have proven that this summation is equal to $2 \boldsymbol{n}$ for any value of \boldsymbol{n} in the positive integers.

Problem:

How many handshakes? Prove this by induction

$$
\sum_{0}^{n-1} i=\frac{n(n-1)}{2}
$$

Prove that for all positive integers:

Base Case:

Inductive Step:

$$
\sum_{i=0}^{n-1} i=\frac{n(n-1)}{2}
$$

This summation evaluated when $\mathbf{n}=\mathbf{1}$ is 0 .

Assume summation evaluated at some $\boldsymbol{n} \boldsymbol{- 1}$ will be equal to $(\mathrm{n}-1)(\mathrm{n}-2) / 2$.
Then, considering $\boldsymbol{n}=(\boldsymbol{n}-\mathbf{1})+\boldsymbol{1}$ will add one more term to the left-hand side summation: An additional $\boldsymbol{n}-\mathbf{1}$.
We add this term to both sides of the equation, which results in:

$$
\begin{aligned}
& =(n-1)(n-2) / 2+n-1 \\
& =\left(n^{2}-n+2\right) / 2+n-1 \\
& =\left(n^{2}-3 n+2+2 n-2\right) / 2 \\
& =\left(n^{2}-n\right) / 2=n(n-1) / 2
\end{aligned}
$$

You do not need to show every algebraic step in your own prose proof (provided here for clarity)
for the right-hand side. This proves that if the summation holds for the case of $\mathbf{n} \mathbf{- 1}$, then it will also hold for the case \boldsymbol{n} for some arbitrary \boldsymbol{n}.

By induction on n, we have proven that this summation is equal to $2 \boldsymbol{n}$ for any value of \boldsymbol{n} in the natural numbers.

Problem:

Prove for all the natural numbers:

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Problem:

Prove for all the natural numbers:

$$
\begin{gathered}
\sum_{i=1}^{n}(2 i-1)=n^{2} \\
\text { Where } \\
\{i \in \mathbb{Z} \mid(i \geq 1) \wedge(i \leq n)\}=\{1,2,3 \ldots, n-1, n\}
\end{gathered}
$$

Problem:

Prove for all the natural numbers:

$$
\begin{gathered}
\sum_{i=1}^{n}(2 i-1)=n^{2} \\
\text { Where } \\
\{i \in \mathbb{Z} \mid(i \geq 1) \wedge(i \leq n)\}=\{1,2,3 \ldots, n-1, n\}
\end{gathered}
$$

Prove that for all natural numbers:

Base Case:

$$
\sum_{i=1}^{n}(2 i-1)=n^{2}
$$

Make sure that your base cases cover the entire domain of the variable you're inducting over that create an empty sum

This summation evaluated when $\mathbf{n}=\mathbf{0}$ sums over nothing, so it results in 0 . This summation evaluated when $\mathbf{n}=\mathbf{1}$ is $\mathbf{1}$, which is equal to $1^{2}=n^{2}$

Inductive Step:

Assume summation evaluated at $\boldsymbol{n} \mathbf{- 1}$ will be equal to $(\mathbf{n} \mathbf{- 1})^{\mathbf{2}}$.
Then, considering $\boldsymbol{n}=(\boldsymbol{n}-\mathbf{1})+\boldsymbol{1}$ will add one more term to the sum: $A n$ additional $2 \boldsymbol{n}-1$.
We add this term to both sides of the equation, which results in: $(n-1)^{2}+2 n-1=\left(n^{2}-2 n+1\right)+2 n-1=n^{2}$. This proves that if the summation holds for the case of $n-1$, then it will also hold for the case n for some arbitrary n.

By the principle of induction, it's proven that this summation is equal to \boldsymbol{n}^{2} for any value of n in the natural numbers.

