Sept 14th Slides

Agenda

- Opening Notes
- Implication
- Bi-implication
- Boolean Algebra
- Boolean Algebra Equivalences
- Boolean Algebra Associative and Commutative properties

Now I'm taking it for granted that you know....

∨ ∧

⊕

As well as....

 \in \subseteq $\mathscr{P}(S)$ |S|

Implication

P = My animal is a poodle Q = it is a dog

 $P \rightarrow Q$

р	q	$p \rightarrow q$
Т	Т	
Т	F	
F	Т	
F	F	

P = My animal is a poodle Q = it is a dog

P = My animal is a poodle Q = it is a dog

P = My animal is a poodle Q = it is a dog

$$P \rightarrow Q$$
 p q $p \rightarrow q$ T T T T T F F T F T F F

Implication -- Try on your own to write all 4 as implications (you can use assign variables, like y for yoga)

- "Whenever I do yoga, I feel calm"
- "All kangaroos are mammals"
- "If I'm in discrete class, then I'm on zoom today."
- "I wear a hat if it's sunny"

Some ways of stating Implication

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- *q* follows from *p*
- p only if q

Bi-Implication

I will do laundry if and only if I have only dirty clothes!

L = do laundry D = only have dirty clothes

Bi-Implication

What does this look like the inverse of?

Prove

3(x+y) = 3x+3y

Prove x y

 $y \qquad \qquad 3(x+y) = 3x+3y$

Prove

х у 0 0 3(x + y) = 3x + 3y3(0 + 0) = 3(0) + 3(0)

Prove *x y* 0 0 1 0

$$3(x + y) = 3x + 3y$$

$$3(0 + 0) = 3(0) + 3(0)$$

$$3(1 + 0) = 3(1) + 3(0)$$

Prove
$$x$$
 y $3(x + y) = 3x + 3y$
 0 0 $3(0 + 0) = 3(0) + 3(0)$
 1 0 $3(1 + 0) = 3(1) + 3(0)$
 2 0 $3(2 + 0) = 3(1) + 3(0)$

Prove *x y* 0 0 1 0 2 0

No.....

$$3(x + y) = 3x + 3y$$

$$3(0 + 0) = 3(0) + 3(0)$$

$$3(1 + 0) = 3(1) + 3(0)$$

$$3(2 + 0) = 3(2) + 3(0)$$

Boolean Algebra -- Simplify without using a truth table

Boolean Algebra -- Simplify without using a truth table

Boolean Algebra -- Choose a few to reason out!

Associative Property: you can add and remove parentheses around them

Example:
$$(2+3)+5 = 2+(3+5)$$

Counterexample: $(2-3)-5 \neq 2-(3-5)$

Commutative Property: you can swap their operands' position

Example: 2+3 = 3+2

Counterexample: $2-3 \neq 3-2$

Which symbols are associative/commutative?

$$\neg \qquad \lor \qquad \land \qquad \Leftrightarrow \qquad \rightarrow$$