Sept 14th Slides

Agenda

- Opening Notes
- Implication
- Bi-implication
- Boolean Algebra
- Boolean Algebra - Equivalences
- Boolean Algebra - Associative and Commutative properties

Now I'm taking it for granted that you know....

$$
\begin{aligned}
& \neg \\
& \mathrm{V} \\
& \wedge \\
& \oplus
\end{aligned}
$$

As well as....

Implication
$\mathrm{P}=\mathrm{My}$ animal is a poodle
$\mathrm{Q}=$ it is a dog

$$
\mathbf{P} \rightarrow \mathbf{Q}
$$

p	q	$p \rightarrow q$
T	T	
T	F	
F	T	
F	F	

$\mathrm{P}=\mathrm{My}$ animal is a poodle
$Q=i t$ is a dog
What should be shaded?

$\rightarrow \mathbf{Q}$		
p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

$\mathrm{P}=\mathrm{My}$ animal is a poodle
$Q=$ it is a dog
What should be shaded?
$\mathbf{P} \rightarrow \mathbf{Q}$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

$\mathrm{P}=\mathrm{My}$ animal is a poodle $Q=i t$ is a dog
$\mathbf{P} \rightarrow \mathbf{Q}$

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Implication -- Try on your own to write all 4 as implications (you can use assign variables, like y for yoga)

- "Whenever I do yoga, I feel calm"
- "All kangaroos are mammals"
- "If I'm in discrete class, then I'm on zoom today."
- "I wear a hat if it's sunny"

Some ways of stating Implication

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- q follows from p
- p only if q

Bi-Implication

I will do laundry if and only if I have only dirty clothes!

$$
L=\text { do laundry } \quad D=\text { only have dirty clothes }
$$

Bi-Implication

What does this look like the inverse of?

Boolean Algebra

Bootean Algebra

Prove

$$
3(x+y)=3 x+3 y
$$

Boolean Algebra

Prove
$x \quad y$

$$
3(x+y)=3 x+3 y
$$

Bootear Algebra

x	y	$3(x+y)=3 x+3 y$	
Prove	x	0	$3(0+0)=3(0)+3(0)$

Bootean Algebra

Prove	x	y	$3(x+y)$
0	0	$=3 x+3 y$	
1	0	$3(0+0)$	$=3(0)+3(0)$
$3(1+0)$	$=3(1)+3(0)$		

Bootean Algebra

Prove	x	y	$3(x+y)$	$=3 x+3 y$
0	0			
1	0	$3(0+0)$	$=3(0)+3(0)$	
$3(1+0)$	$=3(1)+3(0)$			
$3(2+0)$	$=3(1)+3(0)$			

Bootear Algebra

Prove			
x	y		$3(x+y)$
0	0	$3 x+3 y$	
1	0	$3(0+0)$	$=3(0)+3(0)$
2	0	$3(1+0)$	$=3(1)+3(0)$

Boolean Algebra -- Simplify without using a truth table

$$
\neg \neg P
$$

Boolean Algebra -- Simplify without using a truth table

$$
\begin{array}{ll}
\neg \neg P & P \\
P \wedge \perp & \perp \\
P \wedge \top & P \\
P \vee \perp & P \\
P \vee \top & \top
\end{array}
$$

Boolean Algebra -- Choose a few to reason out!

simplified

$$
P
$$

$$
\begin{gathered}
\rightarrow \\
\top \rightarrow P \\
\neg P \rightarrow P
\end{gathered}
$$

$$
T \leftrightarrow P
$$

$$
\perp \oplus P
$$

$$
\begin{aligned}
& \top \wedge P \\
& P \wedge P
\end{aligned}
$$

$$
\begin{aligned}
& \perp \vee P \\
& P \vee P
\end{aligned}
$$

$$
\neg P
$$

$$
\begin{gathered}
P \rightarrow \perp \\
P \rightarrow \neg P
\end{gathered}
$$

$$
\perp \rightarrow P
$$

$$
P \rightarrow \top \quad P \leftrightarrow P \quad P \oplus \neg P
$$

$$
P \rightarrow P
$$

$$
\perp
$$

$$
P \leftrightarrow \neg P \quad P \oplus P \quad \stackrel{\perp \wedge P}{P \wedge \neg P}
$$

Boolean Algebra

Associative Property: you can add and remove parentheses around them

Example: $(2+3)+5=2+(3+5)$
Counterexample: (2-3)-5 = 2-(3-5)

Boolean Algebra

Commutative Property: you can swap their operands' position

Example: $2+3=3+2$
Counterexample: 2-3 $=3-2$

Boolean Algebra

Which symbols are associative/commutative?

ᄀ

\wedge
\oplus

