
September 28 Slides
Elizabeth Orrico

Predicates

“A function that evaluates to True or False”

“A proposition missing the noun(s)”

“A proposition template”

Universal Quantifier (∀)

∀ = “for all” or “given any”
It expresses that a propositional function can be satisfied by
every member of the domain

Domain: People L(x, y) = x loves y

∀x L(x, Raymond) means ???

Universal Quantifier (∀)

∀ = “for all” or “given any”
It expresses that a propositional function can be satisfied by
every member of the domain.

Domain: People L(x, y) = x loves y

∀x L(x, Raymond) means “For all people x, each one loves Raymond”
 “Given any person x, that person loves Raymond”

 “Every person loves Raymond”

Existential Quantifier (∃)

∃ = "there exists", "there is at least one", or "for some"
It expresses that a propositional function can be satisfied by
at least one member of the domain.

Domain: People L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”

∃ and ∀

Domain: People L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”
∀x ¬L(x, Chris) means “For all people, each one does not love Chris”

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)

∃ and ∀ -- Your Turn!

Domain: People L(x, y) = x loves y

¬∃x L(x, Chris) means “There does not exist one person who loves Chris”
∀x ¬L(x, Chris) means “For all people, each one does not love Chris”

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)
∀x L(x, Raymond) ≡ [using ∃]

∃ and ∀ -- Your Turn!

Domain: People L(x, y) = x loves y

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)
∀x L(x, Raymond) ≡ ¬∃x ¬L(x, Raymond)

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
How could we check in code that everyone hates Chris?

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
How could we check in code that everyone hates Chris?
(psuedocode)

hatesChris = True
for p in {Daniel, Melanie, Josh, Jenn}:

if L(p, Chris):
hatesChris = False

End
Return hatesChris

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
How could we check in code that everyone loves
Raymond?

lovesRaymond = True
for p in {Daniel, Melanie, Josh, Jenn}:

if not L(p, Raymond):
lovesRaymond = False

End
Return lovesRaymond

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
Everyone hates Chris
How could we write this out as a boolean expression?

¬∃x L(x, Chris) ≡ ∀x ¬L(x, Chris)

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
Everyone hates Chris
How could we write this out as a boolean expression?

∀x ¬L(x, Chris)
¬L(Daniel, Chris) ∧ ¬L(Melanie, Chris) ∧¬L(Josh, Chris) ∧¬L(Jenn, Chris)

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
Everyone hates Chris
What about the “There exists version”?

∀x ¬L(x, Chris)
¬L(Daniel, Chris) ∧ ¬L(Melanie, Chris) ∧¬L(Josh, Chris) ∧¬L(Jenn, Chris)

¬∃x L(x, Chris)
¬(L(Daniel, Chris) ∨ L(Melanie, Chris) ∨ L(Josh, Chris) ∨ L(Jenn, Chris))

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}
By DeMorgan’s Law, these are equivalent!

¬L(Daniel, Chris) ∧ ¬L(Melanie, Chris) ∧¬L(Josh, Chris) ∧¬L(Jenn, Chris)
≡

¬(L(Daniel, Chris) ∨ L(Melanie, Chris) ∨ L(Josh, Chris) ∨ L(Jenn, Chris))

∃ and ∀ -- Your Turn!

Domain: {Daniel, Melanie, Josh, Jenn}

Associate “for all” with AND’s since it becomes false if just one truth value is
false

∀x ¬L(x, Chris) = ¬L(Daniel, Chris) ∧ ¬L(Melanie, Chris) ∧¬L(Josh, Chris) ∧¬L(Jenn,
Chris)

Associate “there exists” with OR’s since it becomes true if just one truth value is
true

¬∃x L(x, Chris) = ¬(L(Daniel, Chris) ∨ L(Melanie, Chris) ∨ L(Josh, Chris) ∨ L(Jenn,
Chris))

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = x loves y

Are these equivalent?

∃y∀x L(x,y) ≡ ∀x∃y L(x,y)
?

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = x loves y
Are these equivalent?

∃y∀x L(x,y) is not equivalent to ∀x∃y L(x,y)

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = x loves y
Are these equivalent?

∃y∀x L(x,y) is not equivalent to ∀x∃y L(x,y)

How can we ensure that this y person doesn’t
love themself?
Domain: People L(x, y) = x loves y

∃y∀x L(x,y) ???

