September 28 Slides

Elizabeth Orrico

Predicates

"A function that evaluates to True or False"
"A proposition missing the noun(s)"
"A proposition template"

Universal Quantifier (\forall)

$\forall=$ "for all" or "given any"
It expresses that a propositional function can be satisfied by every member of the domain

Domain: People $L(x, y)=x$ loves y
$\forall \times \mathrm{L}(\mathrm{x}$, Raymond) means ???

Universal Quantifier ($\boldsymbol{\nabla}$)

$\forall=$ "for all" or "given any"
It expresses that a propositional function can be satisfied by every member of the domain.

Domain: People $L(x, y)=x$ loves y
$\forall \mathbf{x} L(x$, Raymond) means "For all people x, each one loves Raymond"
"Given any person x, that person loves Raymond"
"Every person loves Raymond"

Existential Quantifier (${ }^{(7)}$

$\exists=$ "there exists", "there is at least one", or "for some" It expresses that a propositional function can be satisfied by at least one member of the domain.

Domain: People $L(x, y)=x$ loves y
$\neg \exists \mathbf{x} \mathbf{L}(\mathbf{x}$, Chris) means "There does not exist one person who loves Chris"

\exists and \forall

Domain: People $L(x, y)=x$ loves y

$\neg \exists \mathbf{x} \mathbf{L}(\mathbf{x}$, Chris) means "There does not exist one person who loves Chris" $\forall x \neg L(x, C h r i s)$ means "For all people, each one does not love Chris"

$$
\neg \exists x \mathrm{~L}(\mathrm{x}, \text { Chris }) \equiv \forall \mathrm{x} \neg \mathrm{~L}(\mathrm{x}, \text { Chris })
$$

\exists and \forall-- Your Turn!

Domain: People $L(x, y)=x$ loves y

$\neg \exists \mathbf{x}(\mathbf{x}$, Chris) means "There does not exist one person who loves Chris" $\forall x \neg \mathrm{~L}(\mathrm{x}$, Chris) means "For all people, each one does not love Chris"

$$
\begin{gathered}
\neg \exists x \mathrm{~L}(\mathrm{x}, \text { Chris }) \equiv \forall x \neg \mathrm{~L}(\mathrm{x}, \text { Chris }) \\
\forall \times \mathrm{L}(\mathrm{x}, \text { Raymond }) \equiv \text { [using } \exists]
\end{gathered}
$$

\exists and \forall-- Your Turn!

Domain: People $L(x, y)=x$ loves y

$$
\begin{gathered}
\neg \exists x \mathrm{~L}(\mathrm{x}, \text { Chris }) \equiv \forall x \neg \mathrm{~L}(\mathrm{x}, \text { Chris }) \\
\forall \times \mathrm{L}(\mathrm{x}, \text { Raymond }) \equiv \neg \exists \mathrm{x} \neg \mathrm{~L}(\mathrm{x}, \text { Raymond })
\end{gathered}
$$

\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\} How could we check in code that everyone hates Chris?

\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\}
How could we check in code that everyone hates Chris? (psuedocode)

```
hatesChris = True
for P in {Daniel, Melanie, Josh, Jenn}:
    if L(p, Chris):
        hatesChris = False
    End
Return hatesChris
```


\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\} How could we check in code that everyone loves Raymond?

```
lovesRaymond = True
for p in {Daniel, Melanie, Josh, Jenn}:
    if not L(p, Raymond):
    lovesRaymond = False
    End
Return lovesRaymond
```


\exists and $\forall--$ Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\}
Everyone hates Chris
How could we write this out as a boolean expression?

$$
\neg \exists x \mathrm{~L}(\mathrm{x}, \text { Chris }) \equiv \forall x \neg \mathrm{~L}(\mathrm{x}, \text { Chris })
$$

\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\}
Everyone hates Chris
How could we write this out as a boolean expression?

$$
\forall x \neg L(x, \text { Chris })
$$

$\neg \mathrm{L}$ (Daniel, Chris) $\wedge \neg \mathrm{L}$ (Melanie, Chris) $\wedge \neg \mathrm{L}$ (Josh, Chris) $\wedge \neg \mathrm{L}$ (Jenn, Chris)

\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\}
Everyone hates Chris
What about the "There exists version"?
$\forall x \neg L(x$, Chris)
$\neg \mathrm{L}($ Daniel, Chris) $\wedge \neg \mathrm{L}$ (Melanie, Chris) $\wedge \neg \mathrm{L}$ (Josh, Chris) $\wedge \neg \mathrm{L}($ Jenn, Chris)
ᄀヨx L(x, Chris)
$\neg($ (Daniel, Chris) $\vee \mathrm{L}$ (Melanie, Chris) $\vee \mathrm{L}$ (Josh, Chris) $\vee \mathrm{L}$ (Jenn, Chris) $)$

\exists and \forall-- Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\} By DeMorgan's Law, these are equivalent!
$\neg \mathrm{L}$ (Daniel, Chris) $\wedge \neg \mathrm{L}$ (Melanie, Chris) $\wedge \neg \mathrm{L}$ (Josh, Chris) $\wedge \neg \mathrm{L}($ Jenn, Chris)

$$
\equiv
$$

$\neg($ (Daniel, Chris) $\vee \mathrm{L}$ (Melanie, Chris) $\vee \mathrm{L}$ (Josh, Chris) $\vee \mathrm{L}($ Jenn, Chris $))$

\exists and $\forall--$ Your Turn!

Domain: \{Daniel, Melanie, Josh, Jenn\}
Associate "for all" with AND's since it becomes false if just one truth value is false
$\forall x \neg \mathrm{~L}(\mathrm{x}$, Chris $)=\neg \mathrm{L}($ Daniel, Chris $) \wedge \neg \mathrm{L}($ Melanie, Chris $) \wedge \neg \mathrm{L}($ Josh, Chris) $\wedge \neg \mathrm{L}($ Jenn, Chris)

Associate "there exists" with OR's since it becomes true if just one truth value is true
$\neg \exists x \mathrm{~L}(\mathrm{x}$, Chris $)=\neg(\mathrm{L}($ Daniel, Chris $) \vee \mathrm{L}$ (Melanie, Chris) $\vee \mathrm{L}$ (Josh, Chris) $\vee \mathrm{L}$ (Jenn,

Quick Intro to Multiple Quantifiers:

Domain: People $L(x, y)=x$ loves y
Are these equivalent?

$$
\exists y \forall x L(x, y) \equiv \forall x \exists y L(x, y)
$$

Quick Intro to Multiple Quantifiers:

Domain: People $L(x, y)=x$ loves y
Are these equivalent?

$$
\exists y \forall x L(x, y) \text { is not equivalent to } \forall x \exists y L(x, y)
$$

Quick Intro to Multiple Quantifiers:

Domain: People $L(x, y)=x$ loves y
Are these equivalent?

$$
\exists y \forall x L(x, y) \text { is not equivalent to } \forall x \exists y L(x, y)
$$

Remember

When you are dealing with mixed quantifiers, the order is very important. $\forall x \exists y R(x, y)$ is not logically equivalent to $\exists y \forall x R(x, y)$.

How can we ensure that this y person doesn't love themself?

Domain: People $L(x, y)=x$ loves y

$$
\exists y \forall x L(x, y) ? ? ?
$$

