Sept 2 Slides

Sidebar: Set Cover Problem

A very famous and useful problem in combinatorics and CS! One of the original problems to be proven NP-Complete.

One Example: Given a "universe" \boldsymbol{U} (big set with everything else in the problem inside) and a set of sets, \boldsymbol{S}

$$
\begin{gathered}
U=\{1,2,3,4,5\} \\
S=\{\{1,2,3\},\{2,4\},\{3,4\}\{4,5\}\}
\end{gathered}
$$

What is the minimum number of sets in \boldsymbol{S} needed to cover everything in U ?

Sidebar: Set Cover Problem

Your turn!

???

Output

Sidebar: Set Cover Problem

Your turn!

U, ก,
, C

U "union"

ก "intersect"
\ "difference"
A^{c} "complement

In mathematics, the intersection of two sets S and T, denoted by $S \cap T$, is the set containing all elements of S that also belong to T (or equivalently, all elements of T that also belong to S)

In mathematics, the intersection of two sets S and T, denoted by $S \cap T$, is the set containing all elements of S that also belong to T (or equivalently, all elements of T that also belong to S)

Union $S \cup T$: the elements that belong either to S or to T (or both).

Union $S \cup T$: the elements that belong either to S or to T (or both).

Difference $S \backslash T$: the elements that belong to S but not to T.

Difference $S \backslash T$: the elements that belong to S but not to T.

Complement \bar{S} : elements (of the universe) that don't belong to S.

Complement \bar{S} : elements (of the universe) that don't belong to S.

U, ก,
, C

U "union"

ก "intersect"
\ "difference"
A^{c} "complement

Useful Infinite Sets

Cardinality

Q: Compute each cardinality.

1. $|\{1,-13,4,-13,1\}|$
2. $|\{3,\{1,2,3,4\}, \varnothing\}|$
3. $|\} \mid$
4. $|\{\},\{\{ \}\},\{\{\{ \}\}\}\} \mid$
