Sept 2 Slides

Sidebar: Set Cover Problem

A very famous and useful problem in combinatorics and CS! One of the original problems to be proven **NP-Complete**.

One Example: Given a "**universe**" *U* (big set with everything else in the problem inside) and a set of sets, *S*

$$U = \{1, 2, 3, 4, 5\}$$

$$S = \{ \{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\} \}$$

What is the minimum number of sets in \boldsymbol{S} needed to cover everything in

Sidebar: Set Cover Problem

Your turn!

???

Input

Output

Sidebar: Set Cover Problem

Your turn!

Output

U, ∩, \, **C**

U "union"

∩ "intersect"

\ "difference"

 A^c "complement

In mathematics, the **intersection** of two sets S and T, denoted by $S \cap T$, is the set containing all elements of S that also belong to T (or equivalently, all elements of T that also belong to S)

In mathematics, the **intersection** of two sets S and T, denoted by $S \cap T$, is the set containing all elements of S that also belong to T (or equivalently, all elements of T that also belong to S)

Union $S \cup T$: the elements that belong either to S or to T (or both).

Union $S \cup T$: the elements that belong either to S or to T (or both).

Difference $S \setminus T$: the elements that belong to S but not to T.

Difference $S \setminus T$: the elements that belong to S but not to T.

Complement \overline{S} : elements (of the universe) that don't belong to S.

Complement \overline{S} : elements (of the universe) that don't belong to S.

U, ∩, \, **C**

U "union"

∩ "intersect"

\ "difference"

 A^c "complement

Cardinality

Q: Compute each cardinality.

- 1. |{1, -13, 4, -13, 1}|
- 2. |{3, {1,2,3,4}, ∅}|
- 3. |{}|
- 4. $|\{\{\},\{\{\}\},\{\{\}\}\}\}|$