
September 30 Slides
Elizabeth Orrico

∃ and ∀

Associate “for all” with AND’s since it becomes false if
just one truth value is false

Associate “there exists” with OR’s since it becomes
true if just one truth value is true

Last Class:

Domain: People L(x, y) = x loves y

Are these equivalent?

∃y∀x L(x,y) ≡ ∀x∃y L(x,y)
?

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = x loves y
Are these equivalent?

∃y∀x L(x,y) is not equivalent to ∀x∃y L(x,y)

Quick Intro to Multiple Quantifiers:

Domain: People L(x, y) = x loves y
Are these equivalent?

∃y∀x L(x,y) is not equivalent to ∀x∃y L(x,y)

Domain: {Ann, Bob, Chris} ∃y∀x L(x,y)

// since ∃ means stuff “or’d” together, start with false
existValue = False
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

Think about nested loops

Domain: {Ann, Bob, Chris} ∃y∀x L(x,y)
How will this code change for “∀x∃y L(x,y)”?
// since ∃ means stuff “or’d” together, start with false
existValue = False
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

Think about nested loops

Domain: {Ann, Bob, Chris} ∀x∃y L(x,y)

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

// since ∃ means stuff “or’d” together, start with false
existValue = False
for y in {Ann, Bob, Chris}:

existValue = existValue ∨ L(x,y)
end
univValue = existValue ∧ univValue

end
Return univValue

Think about nested loops

Domain: {Ann, Bob, Chris} ∃y∀x L(x,y)

(L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann))
∨ (L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob))
∨ (L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris))

Think about boolean logic

Domain: {Ann, Bob, Chris} ∃y∀x L(x,y)
How will this change for “∀x∃y L(x,y)”?

(L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann))
∨ (L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob))
∨ (L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris))

Think about boolean logic

Domain: {Ann, Bob, Chris} ∃y∀x L(x,y)
How will this change for “∀x∃y L(x,y)”?

(L(Ann, Ann) ∨ L(Ann, Bob) ∨ L(Ann, Chris))
∧ (L(Bob, Ann) ∨ L(Bob, Bob) ∨ L(Bob, Chris))
∧ (L(Chris, Ann) ∨ L(Chris, Bob) ∨ L(Chris, Chris))

Think about boolean logic

Remember, entailment was about just focusing on one of the consequences of
knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates
Chris.

Entailment with Quantifiers

Remember, entailment was about just focusing on one of the consequences of
knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates
Chris.

∀x ¬L(x, Chris) ⊨ ¬L(Raymond, Chris)

The entailed statement doesn’t contain as much information as the original
statement-- we threw out some info

Entailment with Quantifiers

∀x ∈ ℕ. P(x) ⊨ P(2102)

The entailed statement doesn’t contain as much information as the original
statement-- we threw out some info

Entailment with Quantifiers

∀x ∈ ℕ. P(x)
⊨ P(2102)

⊨ ∃x∈ ℕ. P(x)

The entailed statement doesn’t contain as much information as the original
statement-- we threw out some info

Entailment with Quantifiers

We might want to say:
∀x ∈ S. P(x) ⊨ ∃x∈ S. P(x)

Where S is any set (domain)

Can you think of a counter example?

Entailment with Quantifiers

We might want to say:
∀x ∈ S. P(x) ⊨ ∃x∈ S. P(x)

Where S is any set (domain)

Can you think of a counter example?

Entailment with Quantifiers

The general structure of PROOF by CASES is that of a disjunctive tautology

Proof by Cases

The general structure of PROOF by CASES is that of a disjunctive tautology

Different situations or’d together that evaluate to true:

(case 1) ∨ (case 2) ∨ (case 3) ∨ (case 4)

Proof by Cases

Theorem: __________

Proof: Either (case 1) or (case 2) or (case 3)
Case 1:
Assume case 1 is true
……
∴ x

Case 2:
Assume case 2 is true
……
∴ x

Case 3:
Assume case 3 is true
……
∴ x

Since __________ is true in all cases, it is true in general.

Proof by Cases

Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Proof by Cases -- EXAMPLE

Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false. (a disjunctive tautology!)

Proof by Cases -- EXAMPLE

Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

Proof by Cases -- EXAMPLE

Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

Case 2:
P is False
P→Q ≡ F→Q ≡ T
¬P∨Q ≡ ¬F∨Q ≡ T∨Q ≡ T
∴ P→Q ≡ ¬P∨Q when P is False

Proof by Cases -- EXAMPLE

Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

Case 2:
P is False
P→Q ≡ F→Q ≡ T
¬P∨Q ≡ ¬F∨Q ≡ T∨Q ≡ T
∴ P→Q ≡ ¬P∨Q when P is False

Since P→Q ≡ ¬P∨Q is true in all cases, it is true in general.

Proof by Cases -- EXAMPLE

This was an informal proof, since I used symbols, not English. Prose proof version from:
https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

Proof by Cases -- EXAMPLE

https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem: ∀x ∈ ℕ. f(x) returns an even natural number.

Proof by Cases -- EXAMPLE

f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem: ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd

Proof by Cases -- EXAMPLE

f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem: ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even

In this case, we use the “if” branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

Proof by Cases -- EXAMPLE

f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem: ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even

In this case, we use the “if” branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

Case 2: x is odd
In this case, we use the “else” branch of the function. An odd natural number multiplied by 3 is an
odd natural number. Next, we add one to this odd natural number, which results in an even natural
number. Therefore, the theorem is true if x is odd.

Since the theorem is true in all cases, it is true in general.

Proof by Cases -- EXAMPLE

This was an informal proof, since I used symbols, not English. Prose proof version from:
https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

Proof by Cases -- EXAMPLE

https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

