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∃ and ∀

Associate “for all” with AND’s since it becomes false if 
just one truth value is false

Associate “there exists” with OR’s since it becomes 
true if just one truth value is true

 



Last Class:

Domain: People     L(x, y) = x loves y

Are these equivalent? 

∃y∀x L(x,y)  ≡ ∀x∃y L(x,y) 
?

 



Quick Intro to Multiple Quantifiers:

Domain: People     L(x, y) = x loves y
Are these equivalent? 

∃y∀x L(x,y)  is not equivalent to  ∀x∃y L(x,y) 

 



Quick Intro to Multiple Quantifiers:

Domain: People     L(x, y) = x loves y
Are these equivalent? 

∃y∀x L(x,y)  is not equivalent to ∀x∃y L(x,y) 

 



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)

// since ∃ means stuff “or’d” together, start with false
existValue = False   
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)
How will this code change for “∀x∃y L(x,y)”?
// since ∃ means stuff “or’d” together, start with false
existValue = False   
for y in {Ann, Bob, Chris}:

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

univValue = univValue ∧ L(x,y)
end
existValue = existValue ∨ univValue

end
Return existValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∀x∃y L(x,y)

// since ∀ means stuff “and’d” together, start with true
univValue = True
for x in {Ann, Bob, Chris}:

// since ∃ means stuff “or’d” together, start with false
existValue = False 
for y in {Ann, Bob, Chris}:

existValue = existValue ∨ L(x,y)
end
univValue = existValue ∧ univValue

end
Return univValue

 

Think about nested loops



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)

(   L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann)   )
∨     (   L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob)   )
∨     (   L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris)   )

  

 

Think about boolean logic



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)
How will this change for “∀x∃y L(x,y)”?

(   L(Ann, Ann) ∧ L(Bob, Ann) ∧ L(Chris, Ann)   )
∨     (   L(Ann, Bob) ∧ L(Bob, Bob) ∧ L(Chris, Bob)   )
∨     (   L(Ann, Chris) ∧ L(Bob, Chris) ∧ L(Chris, Chris)   )

  

 

Think about boolean logic



Domain: {Ann, Bob, Chris}     ∃y∀x L(x,y)
How will this change for “∀x∃y L(x,y)”?

(   L(Ann, Ann) ∨ L(Ann, Bob) ∨ L(Ann, Chris)   )
∧     (   L(Bob, Ann) ∨ L(Bob, Bob) ∨ L(Bob, Chris)   )
∧     (   L(Chris, Ann) ∨ L(Chris, Bob) ∨ L(Chris, Chris)   )

  

 

Think about boolean logic



Remember, entailment was about just focusing on one of the consequences of 
knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates 
Chris.

 

Entailment with Quantifiers



Remember, entailment was about just focusing on one of the consequences of 
knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates 
Chris.  

∀x ¬L(x, Chris) ⊨ ¬L(Raymond, Chris)

The entailed statement doesn’t contain as much information as the original 
statement-- we threw out some info

 

Entailment with Quantifiers



∀x ∈ ℕ. P(x) ⊨ P(2102)

The entailed statement doesn’t contain as much information as the original 
statement-- we threw out some info

 

Entailment with Quantifiers



∀x ∈ ℕ. P(x) 
⊨ P(2102) 

⊨ ∃x∈ ℕ. P(x)

The entailed statement doesn’t contain as much information as the original 
statement-- we threw out some info

 

Entailment with Quantifiers



We might want to say:
∀x ∈ S. P(x) ⊨ ∃x∈ S. P(x)

Where S is any set (domain)

Can you think of a counter example?

 

Entailment with Quantifiers



We might want to say:
∀x ∈ S. P(x) ⊨ ∃x∈ S. P(x)

Where S is any set (domain)

Can you think of a counter example?

 

Entailment with Quantifiers



  

The general structure of PROOF by CASES is that of a disjunctive tautology

 

Proof by Cases



  

The general structure of PROOF by CASES is that of a disjunctive tautology

Different situations or’d together that evaluate to true:

(case 1) ∨ (case 2) ∨ (case 3)  ∨ (case 4)

 

Proof by Cases



Theorem: __________

Proof: Either (case 1) or (case 2) or (case 3) 
Case 1:
Assume case 1 is true
……
∴ x

Case 2:
Assume case 2 is true
……
∴ x

Case 3:
Assume case 3 is true
……
∴ x

Since __________ is true in all cases, it is true in general.

 

Proof by Cases



Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

 

Proof by Cases -- EXAMPLE



Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.         (a disjunctive tautology!)

 

Proof by Cases -- EXAMPLE



Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

 

Proof by Cases -- EXAMPLE



Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

Case 2:
P is False
P→Q ≡ F→Q ≡ T
¬P∨Q ≡ ¬F∨Q ≡ T∨Q ≡ T
∴ P→Q ≡ ¬P∨Q when P is False

 

Proof by Cases -- EXAMPLE



Theorem: P→Q ≡ ¬P∨Q
Proof: Either P is true or P is false.

Case 1:
P is True
P→Q ≡ T→Q ≡ Q
¬P∨Q ≡ ¬T∨Q ≡ F∨Q ≡ Q
∴ P→Q ≡ ¬P∨Q when P is True

Case 2:
P is False
P→Q ≡ F→Q ≡ T
¬P∨Q ≡ ¬F∨Q ≡ T∨Q ≡ T
∴ P→Q ≡ ¬P∨Q when P is False

Since P→Q ≡ ¬P∨Q is true in all cases, it is true in general.

 

Proof by Cases -- EXAMPLE



This was an informal proof, since I used symbols, not English. Prose proof version from:
https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

 

Proof by Cases -- EXAMPLE

https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment


f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem:  ∀x ∈ ℕ. f(x) returns an even natural number.

 

Proof by Cases -- EXAMPLE



f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem:  ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd

 

Proof by Cases -- EXAMPLE



f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem:  ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even

In this case, we use the “if” branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

 

Proof by Cases -- EXAMPLE



f(x):
if x%2 = 0, return 2x
Else return (3x+1)

Theorem:  ∀x ∈ ℕ. f(x) returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even

In this case, we use the “if” branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

Case 2: x is odd
In this case, we use the “else” branch of the function. An odd natural number multiplied by 3 is an
odd natural number. Next, we add one to this odd natural number, which results in an even natural
number. Therefore, the theorem is true if x is odd.

Since the theorem is true in all cases, it is true in general.

 

Proof by Cases -- EXAMPLE



This was an informal proof, since I used symbols, not English. Prose proof version from:
https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

 

Proof by Cases -- EXAMPLE

https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html#apply-entailment

