September 30 Slides

Elizabeth Orrico

\exists and \forall

Associate "for all" with AND's since it becomes false if just one truth value is false

Associate "there exists" with OR's since it becomes true if just one truth value is true

Last Class:

Domain: People $L(x, y)=x$ loves y

Are these equivalent?

$$
\begin{gathered}
\exists y \forall x L(x, y) \equiv \forall x \exists y \mathrm{~L}(\mathrm{x}, \mathrm{y}) \\
?
\end{gathered}
$$

Quick Intro to Multiple Quantifiers:

Domain: People $L(x, y)=x$ loves y
Are these equivalent?

$$
\exists y \forall x L(x, y) \text { is not equivalent to } \forall x \exists y L(x, y)
$$

Quick Intro to Multiple Quantifiers:

Domain: People $L(x, y)=x$ loves y
Are these equivalent?

$$
\exists y \forall x L(x, y) \text { is not equivalent to } \forall x \exists y L(x, y)
$$

Remember

When you are dealing with mixed quantifiers, the order is very important. $\forall x \exists y R(x, y)$ is not logically equivalent to $\exists y \forall x R(x, y)$.

Think about nested loops

```
Domain: \{Ann, Bob, Chris\} \(\exists y \forall x L(x, y)\)
```

```
// since \exists means stuff "or'd" together, start with false
existValue = False
for y in {Ann, Bob, Chris}:
    // since }\forall\mathrm{ means stuff "and'd" together, start with true
    univValue = True
    for x in {Ann, Bob, Chris}:
        univValue = univValue \ L(x,y)
    end
    existValue = existValue V univValue
end
Return existValue
```


Think about nested loops

```
Domain: {Ann, Bob, Chris} \existsy\forallx L(x,y)
How will this code change for " }\forallx\existsy\textrm{L}(\textrm{x},\textrm{y})\mathrm{ "?
// since \exists means stuff "or'd" together, start with false
existValue = False
for y in {Ann, Bob, Chris}:
    // since }\forall\mathrm{ means stuff "and'd" together, start with true
    univValue = True
    for x in {Ann, Bob, Chris}:
        univValue = univValue \ L(x,y)
    end
    existValue = existValue V univValue
end
Return existValue
```


Think about nested loops

```
Domain: \{Ann, Bob, Chris\} \(\forall x \exists y \mathrm{~L}(\mathrm{x}, \mathrm{y})\)
```

```
// since }\forall\mathrm{ means stuff "and'd" together, start with true
univValue = True
for x in {Ann, Bob, Chris}:
    // since \exists means stuff "or'd" together, start with false
    existValue = False
    for y in {Ann, Bob, Chris}:
        existValue = existValue V L(x,y)
    end
    univValue = existValue ^ univValue
end
Return univValue
```


Think about boolean logic

Domain: \{Ann, Bob, Chris\} $\quad \exists y \forall x L(x, y)$

($\mathrm{L}($ Ann,$A n n) \wedge \mathrm{L}($ Bob, Ann $) \wedge \mathrm{L}($ Chris, Ann))
(L(Ann, Bob) $\wedge \mathrm{L}($ Bob, Bob) $\wedge \mathrm{L}$ (Chris, Bob))
(L(Ann, Chris) $\wedge L($ Bob, Chris) $\wedge L($ Chris, Chris))

Think about boolean logic

Domain: \{Ann, Bob, Chris\} $\quad \exists y \forall x L(x, y)$ How will this change for " $\forall x \exists y \mathrm{~L}(\mathrm{x}, \mathrm{y})$ "?
($\mathrm{L}($ Ann, Ann $) \wedge \mathrm{L}($ Bob, Ann $) \wedge \mathrm{L}($ Chris, Ann))
$\vee \quad(\mathrm{L}($ Ann, Bob) $\wedge \mathrm{L}$ (Bob, Bob) $\wedge \mathrm{L}$ (Chris, Bob))
(L(Ann, Chris) $\wedge L($ Bob, Chris) $\wedge L($ Chris, Chris))

Think about boolean logic

Domain: \{Ann, Bob, Chris\} $\exists y \forall x L(x, y)$ How will this change for " $\forall x \exists y L(x, y)$ "?
($L($ Ann, Ann) $\vee L($ Ann, Bob) $\vee L$ (Ann, Chris))
$\wedge \quad(\mathrm{L}(\mathrm{Bob}$, Ann) $\vee \mathrm{L}$ (Bob, Bob) $\vee \mathrm{L}$ (Bob, Chris))
$\wedge \quad(\mathrm{L}($ Chris, Ann) $\vee \mathrm{L}($ Chris, Bob) $\vee \mathrm{L}($ Chris, Chris))

Entailment with Quantifiers

Remember, entailment was about just focusing on one of the consequences of knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates Chris.

Entailment with Quantifiers

Remember, entailment was about just focusing on one of the consequences of knowing that something is true.

For example, if I know that everybody hates Chris, then I know Raymond hates Chris.

$\forall x \neg L(x$, Chris $) \vDash \neg L($ Raymond, Chris)

The entailed statement doesn't contain as much information as the original statement-- we threw out some info

Entailment with Quantifiers

$\forall x \in \mathbb{N} . P(x) \vDash P(2102)$

The entailed statement doesn't contain as much information as the original statement-- we threw out some info

Entailment with Quantifiers

$$
\begin{aligned}
& \forall x \in \mathbb{N} . P(x) \\
& F P(2102) \\
& \vDash \exists x \in \mathbb{N} . P(x)
\end{aligned}
$$

The entailed statement doesn't contain as much information as the original statement-- we threw out some info

Entailment with Quantifiers

> We might want to say:
> $\forall x \in S . P(x) \vDash \exists x \in S . P(x)$

Where S is any set (domain)

Can you think of a counter example?

Entailment with Quantifiers

> We might want to say:
> $\forall x \in S . P(x) \vDash \exists x \in S . P(x)$

Where S is any set (domain)

Can you think of a counter example?

Proof by Cases

The general structure of PROOF by CASES is that of a disjunctive tautology

Proof by Cases

The general structure of PROOF by CASES is that of a disjunctive tautology
Different situations or'd together that evaluate to true:
(case 1) \vee (case 2) \vee (case 3) \vee (case 4)

Proof by Cases

Theorem: \qquad

Proof: Either (case 1) or (case 2) or (case 3)
Case 1:
Assume case 1 is true
$\therefore \mathrm{x}$

Case 2:
Assume case 2 is true
$\therefore \mathrm{x}$

Case 3:
Assume case 3 is true
$\therefore \mathrm{x}$

Since \qquad is true in all cases, it is true in general.

Proof by Cases -- EXAMPLE

Theorem: $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$
Proof: Either \mathbf{P} is true or \mathbf{P} is false.

Proof by Cases -- EXAMPLE

Theorem: $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$

Proof: Either \mathbf{P} is true or \mathbf{P} is false. (a disjunctive tautology!)

Proof by Cases -- EXAMPLE

Theorem: $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$
Proof: Either \mathbf{P} is true or \mathbf{P} is false.
Case 1:
P is True
$\mathrm{P} \rightarrow \mathrm{Q} \equiv T \rightarrow \mathrm{Q} \equiv \mathrm{Q}$
$\neg \mathrm{P} \vee \mathrm{Q} \equiv \neg T \vee \mathrm{Q} \equiv F \vee \mathrm{Q} \equiv \mathrm{Q}$
$\therefore P \rightarrow Q \equiv \neg P \vee Q$ when P is True

Proof by Cases -- EXAMPLE

Theorem: $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$
Proof: Either \mathbf{P} is true or \mathbf{P} is false.
Case 1:
P is True
$\mathrm{P} \rightarrow \mathrm{Q} \equiv T \rightarrow \mathrm{Q} \equiv \mathrm{Q}$
$\neg \mathrm{P} \vee \mathrm{Q} \equiv \neg T \vee \mathrm{Q} \equiv F \vee \mathrm{Q} \equiv \mathrm{Q}$
$\therefore P \rightarrow Q \equiv \neg P \vee Q$ when P is True
Case 2:
P is False
$\mathrm{P} \rightarrow \mathrm{Q} \equiv F \rightarrow \mathrm{Q} \equiv T$
$\neg \mathrm{P} \vee \mathrm{Q} \equiv \neg F \vee \mathrm{Q} \equiv T \vee \mathrm{Q} \equiv T$
$\therefore \mathrm{P} \rightarrow \mathrm{Q} \equiv \neg \mathrm{P} \vee \mathrm{Q}$ when P is False

Proof by Cases -- EXAMPLE

Theorem: $\mathbf{P} \rightarrow \mathbf{Q} \equiv \neg \mathbf{P} \vee \mathbf{Q}$
Proof: Either \mathbf{P} is true or \mathbf{P} is false.
Case 1:
P is True
$\mathrm{P} \rightarrow \mathrm{Q} \equiv T \rightarrow \mathrm{Q} \equiv \mathrm{Q}$
$\neg \mathrm{P} \vee \mathrm{Q} \equiv \neg T \vee \mathrm{Q} \equiv F \vee \mathrm{Q} \equiv \mathrm{Q}$
$\therefore P \rightarrow Q \equiv \neg P \vee Q$ when P is True

Case 2:

P is False
$\mathrm{P} \rightarrow \mathrm{Q} \equiv F \rightarrow \mathrm{Q} \equiv T$
$\neg \mathrm{P} \vee \mathrm{Q} \equiv \neg \mathrm{F} \vee \mathrm{Q} \equiv T \vee \mathrm{Q} \equiv T$
$\therefore P \rightarrow Q \equiv \neg P \vee Q$ when P is False

Since $P \rightarrow Q \equiv \neg P \vee Q$ is true in all cases, it is true in general.

Proof by Cases -- EXAMPLE

This was an informal proof, since I used symbols, not English. Prose proof version from: https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html\#apply-entailment

```
Example - This is a full proof of one of our known equivalences
Theorem 1. P}->Q\equiv\negP\vee
Proof. Either P is true or P is false.
    Case 1: P is true
    The expression P}->Q\mathrm{ in this case is equivalent to T }->Q\mathrm{ , which can be simplified to Q.
    The expression }\negP\veeQ\mathrm{ in this case is equivalent to }\perp\veeQ\mathrm{ , which can be simplified to Q.
    Since the two are equivalent to the same thing, they are equivalent to each other.
    Case 2: P is false
    The expression P->Q in this case is equivalent to }\perp->Q\mathrm{ , which can be simplified to T.
    The expression }\negP\veeQ\mathrm{ in this case is equivalent to T}\veeQ\mathrm{ , which can be simplified to T.
    Since the two are equivalent to the same thing, they are equivalent to each other.
    Since }P->Q\equiv\negP\veeQ\mathrm{ is true in both cases, it is true in general. ■
```


Proof by Cases -- EXAMPLE

```
f(x):
if x%2 = 0, return 2x
Else return (3x+1)
```

Theorem: $\forall x \in \mathbb{N} . f(x)$ returns an even natural number.

Proof by Cases -- EXAMPLE

```
f(x):
if x%2 = 0, return 2x
Else return (3x+1)
```

Theorem: $\forall x \in \mathbb{N} . f(x)$ returns an even natural number.
Proof: Either x is even or x is odd

Proof by Cases -- EXAMPLE

f(x):

```
if x%2 = 0, return 2x
```

Else return $(3 x+1)$

Theorem: $\forall x \in \mathbb{N} . f(x)$ returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even
In this case, we use the "if" branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

Proof by Cases -- EXAMPLE

f(x):
if $x \% 2=0$, return $2 x$
Else return (3x+1)

Theorem: $\forall x \in \mathbb{N} . f(x)$ returns an even natural number.
Proof: Either x is even or x is odd
Case 1: x is even
In this case, we use the "if" branch of the function and return an even natural number multiplied by
2, which is an even natural number. Therefore, the theorem is true if x is even.

Case 2: x is odd
In this case, we use the "else" branch of the function. An odd natural number multiplied by $\mathbf{3}$ is an odd natural number. Next, we add one to this odd natural number, which results in an even natural number. Therefore, the theorem is true if x is odd.

Since the theorem is true in all cases, it is true in general.

Proof by Cases -- EXAMPLE

This was an informal proof, since I used symbols, not English. Prose proof version from: https://www.cs.virginia.edu/luther/2102/F2020/techniques-q4.html\#apply-entailment

```
Example - This is a full proof of one of our known equivalences
Theorem 1. P}->Q\equiv\negP\vee
Proof. Either P is true or P is false.
    Case 1: P is true
    The expression P}->Q\mathrm{ in this case is equivalent to T }->Q\mathrm{ , which can be simplified to Q.
    The expression }\negP\veeQ\mathrm{ in this case is equivalent to }\perp\veeQ\mathrm{ , which can be simplified to Q.
    Since the two are equivalent to the same thing, they are equivalent to each other.
    Case 2: P is false
    The expression P->Q in this case is equivalent to }\perp->Q\mathrm{ , which can be simplified to T.
    The expression }\negP\veeQ\mathrm{ in this case is equivalent to T}\veeQ\mathrm{ , which can be simplified to T.
    Since the two are equivalent to the same thing, they are equivalent to each other.
    Since }P->Q\equiv\negP\veeQ\mathrm{ is true in both cases, it is true in general. ■
```

